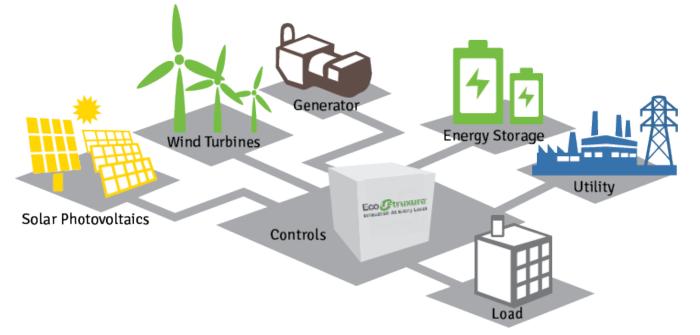
Microgrids

Energy Institute, East Midlands Branch, 4 December 2018

Dr Duncan Child Head of Program Management Energy & Sustainability Services duncan.child@se.com

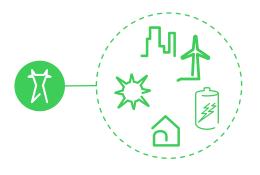
Agenda – 27 November 2018

1	Overview
2	Drivers
3	Potential Applications
4	Impact of Digitisation
5	Case Study
6	Questions



What is a Microgrid?

An integrated energy system consisting of interconnected loads and distributed energy resources...


...which as an integrated system can be controlled as a single entity and operate in parallel with the grid or in an intentional *islanded* mode.

Life Is Or

Types of Microgrids

On-site renewables, energy storage and power generation facilities utilized in parallel with grid

Microgrid will generate energy from local sources in the case of a grid outage OR other external event which makes local energy more desirable

Grid-tied

Island-mode

Microgrid will generate energy from local source

Off-grid

Energy Transition – Global Electricity Demand

40% increase by 2030 - IEA


18% population growth by 2030 – 7.1b

Global urbanization

Access to energy for developing countries

Increasing electrical appliances

Increased electrical usage -cars/heating

Energy Transition – CO2 Emissions & Fossil Fuel Reduction

CO2 emissions from electricity generation account for 45% of world energy related emissions

Depends on quantity of electricity produced and mix of generation

Quantity – expected to increase as related to demand

Mix – move to cleaner sources

Energy Transition – Resiliency

Developed countries

Aging power grid/infrastructure

Little resilience for disruption/instability

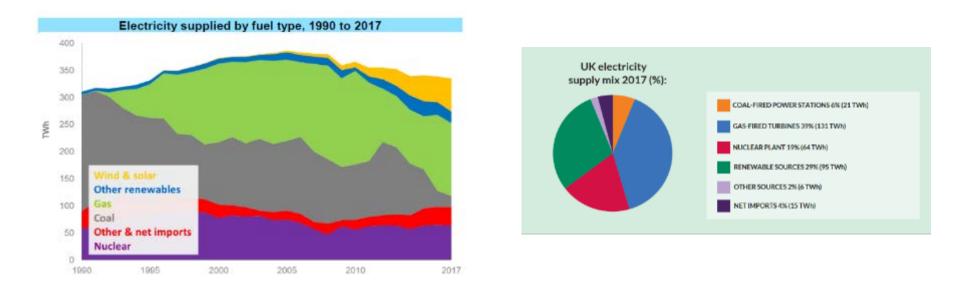
Power outages >1h increasing

US blackouts -\$100b p.a. – 68% - 73% weather related disruptions

Energy Transition – Access to Energy

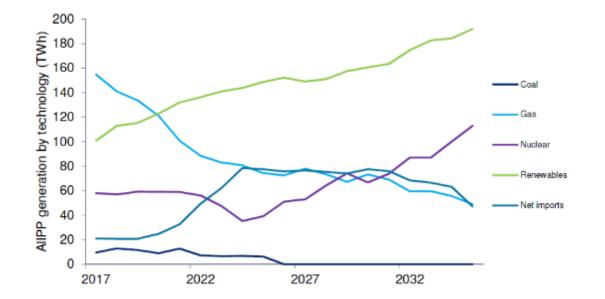
17% global population do not have access to electricity (2013)

Unreliable/poor supply


95% sub-Saharan Africa and developing Asian countries – rural areas

UN Millennium Development Goal – productive use of energy leading to improvement in living conditions

UK Energy 2017


Ref:

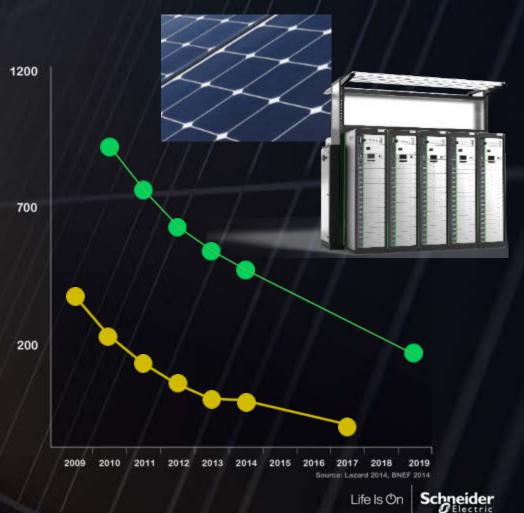
 $https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/728374/UK_Energy_in_Brief_2018.pdf \\ https://www.ofgem.gov.uk/publications-and-updates/infographic-promoting-sustainable-energy-future$

Confidential Property of Schneider Electric | Page 11

Life Is On Schneider

Projected UK Energy Mix

Ref: Updated Energy and Emissions projections 2017, BEIS, January 2018



Declining cost of Renewables and Storage

solar cost has decreased by 80% in the past 7 years

Solar and Storage costs are diving as we speak – both dropping by a factor of 5 in the past 4-5 years.

- Li-Ion Battery Costs (\$/kWh)
 - Solar PV LCOE (\$MWh)

On the brink of disruption

"The electricity system that has served us well for 100 years is facing a fundamental threat to its existence."

Navigant Research, Liberating Microgrids (and all DER)

Confidential Property of Schneider Electric | Page 14

Changing Landscape

2017

Saturday 25 March - The transmissions system demand in Great Britain was for the first time ever lower during the afternoon than it was overnight due to high solar PV generation.

Friday 21 April - Britain went a full day without using coal power for the first time since the industrial revolution.

48% electricity generated from fossil fuel - 75% in 2010

Q2 2018

Renewable energy generation - 31.7% total generation capacity.

From simple and linear

Centralized generation

Transmission & distribution

End-use consumption

Life Is On

Added distributed energy resources

Centralized generation

Transmission & distribution

End-use consumption Distributed energy resources

Confidential Property of Schneider Electric | Page 17

To increasingly complex and multidirectional

Life Is On

Potential Applications

Confidential Property of Schneider Electric

Working around the same value proposition to different market categories

Prosumers

- Commercial buildings
- Research/business campus
- Hospital
- Data Centre
- Minimize energy bills
- Higher integration of renewable energy
- Greater resiliency

Working around the same value proposition to different market categories

Smart Districts

- City campuses
- Eco districts
- Small municipalities
- Green villages
- Minimize energy bills
- Higher integration of renewable energy
- Greater resiliency

Prosumers

Grid-tied

Remote Communities

High integration of renewable

Minimizing environmental and

optimization and management

Life Is On

energy to minimize fuel

Can benefit from microgrid

 Remote villages Communities

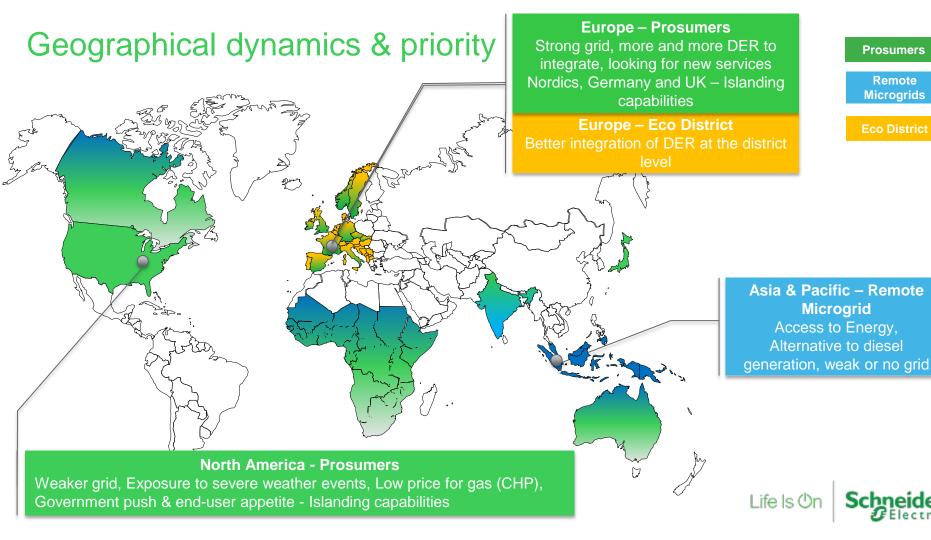
dependency

energy costs

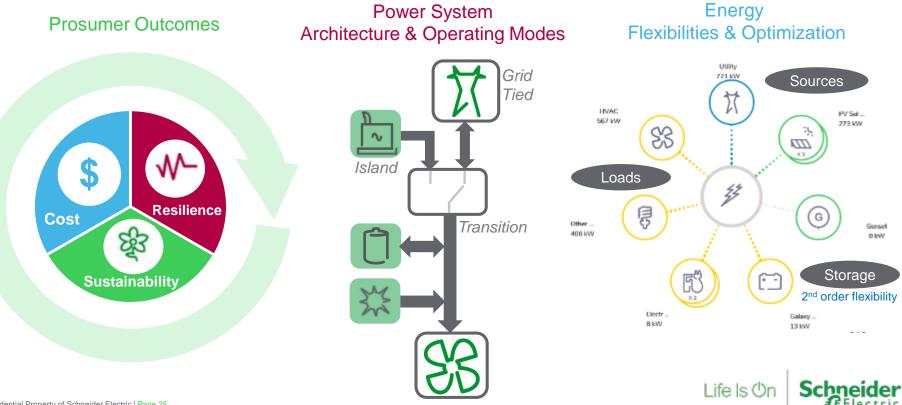
technologies

Islands

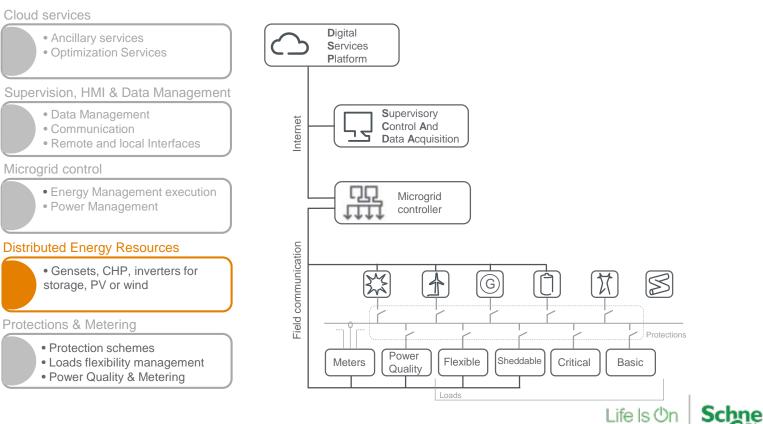
Working around the same value proposition to different market categories


Working around the same value proposition to different market categories

Remote Sites

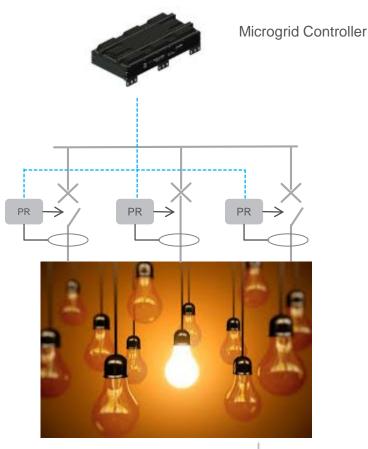

- Military bases
- Mines
- Industrial sites
- Resorts
- Isolated buildings
- High reliability for energy
- Integration of low carbon renewable energy
- Optimisation of both cost and environmental benefit

Life Is Or


Microgrids "Treble Triplet"

"Its about making wise choices at the intersection between energy smartly acquired, locally produced and efficiently consumed!"

Microgrid Requirements



Sheddable loads

Load preservation system = load shedding

In case of islanded mode from the utility, local generation is usually not sufficient to feed the total loads site.

- This is the purpose of the Load Preservation System (LPS) or Load shedding system to maintain the critical loads up and running.
- This functionality is implemented as part of the MicroGrid controller.
- $_{\odot}$ Critical and non critical loads have to be determined
- Switches have to be replaced with circuit breaker for faster reaction to load preservation orders
- The LPS System usually only open breakers. Reclosure of breakers is usually a manual operation.

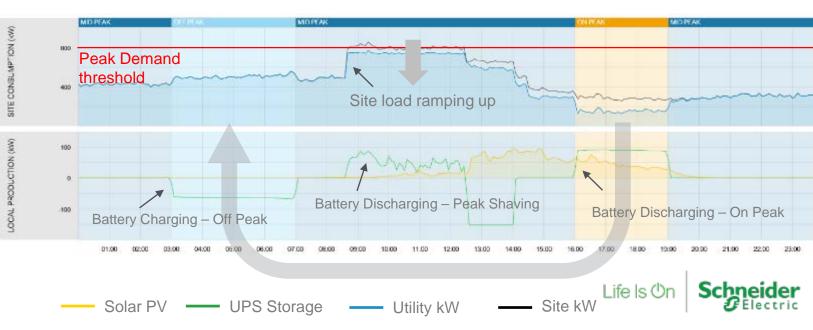
Engineering studies

Microgrid technical & economic sizing

- $_{\odot}$ Bidirectional energy flow protection relays for grid/island mode
- Local flexible loads sizing, power supplies, including renewable sources and storage according to the Microgrid power requirements
- Goal is to define the best configuration (Genset, PV, storage, biomass,etc) in order to minimise the LCOE (Levelized Cost of Electricity) – installed cost/lifetime energy generated

o Fault levels

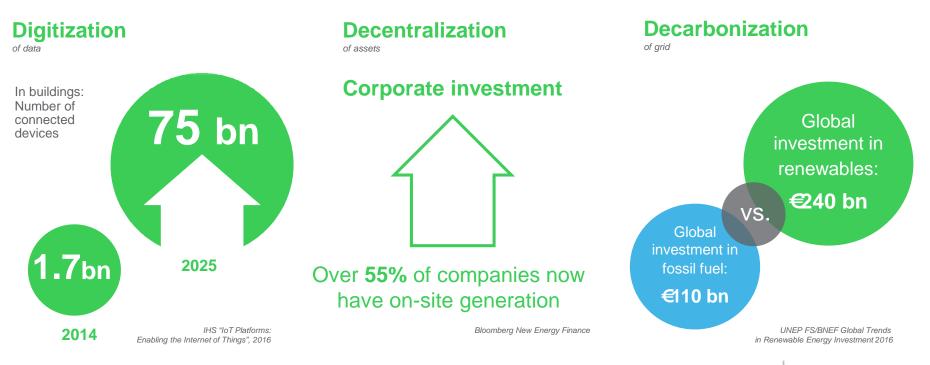
- Harmonics battery/PV inverters
- Switching speeds battery UPS
- $\circ\,$ Protection and discrimination modelling
- \circ Load shedding critical and non critical loads have to be determined

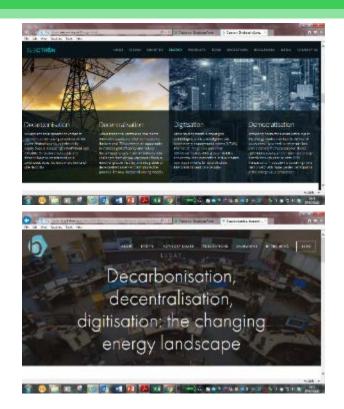

Forecasting and Optimisation

When to consume, produce, store, or sell energy

Example 1: Charge an energy storage system during "off peak" period and discharge during "on peak" period

Example 2: Discharge energy storage to avoid Peak Demand Charges


- Remote Monitoring of DER
- Tariff Management
- Demand
 Control
- Self
 Consumption
- Demand Response
- Island Mode



Accelerating the transformation

The 3Ds – A Common Theme

Technology is the solution.

<u>Technology Dimension</u> Biotech Neurotech Nanotech

Human Factor Decentralisation Demographics. Social connection Democratisation

- Computing Power. Sensors. Communications Renewable Energy. **Energy Storage Robotics & Drones** Mixed Reality Simulation Blockchain **3 D Printing** Data - Insights.
- Cheaper Faster more powerful.
- Cheaper smaller more powerful.
- 5G Wireless Fiber
- Clean, Cheap Energy
- Clean, Cheap reliable Energy
- Automation of physical work
- Simulation, Modeling
- Digital Twin, Modeling
 - Speed & security of transaction,
 - Fast, Flexble Manufacturing
 - Making the unknown known.

Life Is On

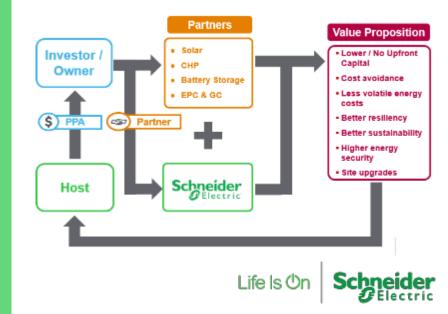
Prosumers

Boston One Campus

Type: Schneider Electric NAM HQ, R&D center, islandable Location: Boston, USA Size: 1 MW Completed: 2017

Customer pain point

Energy reliability, renewable integration, willingness to demonstrate microgrid technologies, to develop and test them + creating new business model


Solution

Microgrid as a service business model with Duke energy, delivering advance microgrid solutions with no upfront cost

Scope

- EcoStruxure[™] Microgrid Operation and EcoStruxure[™] Microgrid Advisor provided by Schneider Electric
- DER: PV from REC solar, Energy Storage, EV charging Stations

Summary

Microgrid - A local, interconnected energy system within clearly defined electrical boundaries

- Incorporates loads and decentralized energy resources, including storage
- Multiple energy sources
- Grid connected or off grid mode
- A single entity with its own independent control in both modes
- Power range from several kW to multiple MW, voltage range up to MV

