Modelling Thermal-Physiological Responses using CFD

Malcolm Cook

T Yang, P Cropper, R Yousaf, D Fiala CIBSE Building Simulation Group 2 December 2009

Universität Stuttgart Germany

Presentation Content

- Project background
- The thermal-physiological model
- The CFD model
- Coupling technology
- Coupled simulation system demonstration
- Natural ventilation application
- Future work

Project Background

 Aim: to develop a validated simulation system capable of predicting impact of natural ventilation designs on occupants and vice versa

IESD-Fiala Human Thermal Comfort Model

Computational Fluid Dynamics (CFD)

Computational Manikins

The Manikin in a CFD Environment

ANSYS CFX - Customisation

- Chosen CFD solver is ANSYS CFX
 - Powerful Application Program Interface (API)
 - Enables customisation of the solver solution cycle
- CFX can be customised using
 - CFX Command Language (CCL)
 - CFX Expression Language (CEL)
 - Embedded Perl
 - User Fortran

ANSYS CFX - User Fortran

Two types of user Fortran

- User CEL (user written CEL functions)
- Junction Box (subroutines called at specific points in the solver execution cycle)
- Both are Fortran subroutines
- Both have access to all solver data structures
- User subroutines may, in turn call:
 - other user written subroutines
 - any solver subroutine or function

CFD Solver Events

Data Exchange

The Coupled System Demo

Coupled System Convergence

Validation: nude case

Natural Ventilation Case Study

- Room (3m×3m×2.5m)
- Vent (0.25m×0.25m)
- Manikin
 - located in the centre
 - placed 0.06m above the floor

- Manikin 1.74m, 66kg
- 1.79m² (nude)
- 2.11 m² (clothed)
- fcl* = 1+0.305×lcl = 1.18
- Icl = 0.6 clo

* I Holmer, H Nilsson, G Havenith, KC Parsons (1999) Clothing convective heat exchange - proposal for improved prediction in standards and models, *Annals of Occupational Hygiene vol 43 number 5, pp 329-337*

Natural Ventilation Case Study: Results [Tair =21°C RH=40%]

Natural Ventilation Case Study: Results [new – Tair =30°C RH=40%]

Natural Ventilation Case Study: Results Radiative htc [T21clo vs T30clo]

Temperature

Air speed

Velocity

Future Work

- Continued Validation
- Asymmetric radiation
- Ceiling radiant cooling
- Breathing manikins and IAQ
- Moving meshes

Acknowledgements

- EPSRC: Grant Ref. EP/C517520/2
- Mr Chris Staples and Dr Yehuda Sinai (Ansys UK)

