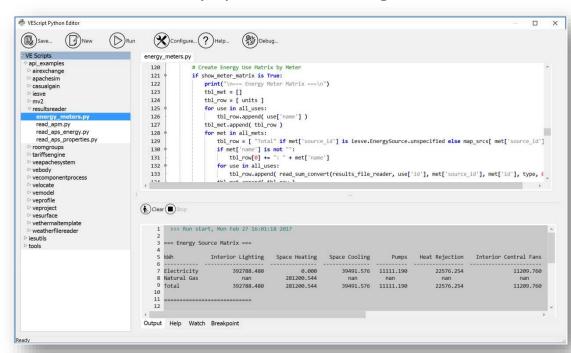
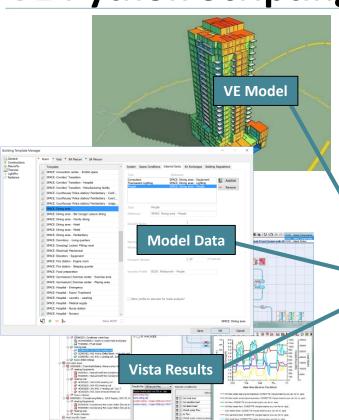
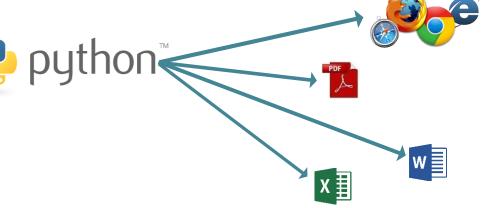
Advancing Simulation capabilities in IES Virtual Environment using Python Scripting

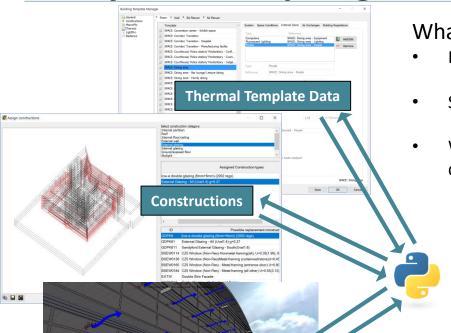

Why Python?

Use Python to write simple programs to automate many specific modelling tasks in VE


Features of Python:

- User friendly and readable syntax
- Easy to learn
- Many open source libraries
- Many free online learning resources


VE Python Scripting – VE 2017


What can VE Python Scripting be used for?

- Automatically extract model or results data
- Perform simple or complex calculations
- Arrange the data into a customised format
- Write to Excel/Word/pdf or send across the internet

VE Python Scripting – VE 2018

MacroFlo Openings

What's new in VE 2018?

- Extract Constructions, Renewables, MacroFlo data
- Simple edits to model geometry
- Write Construction, Renewable, MacroFlo and room/template data back into the VE

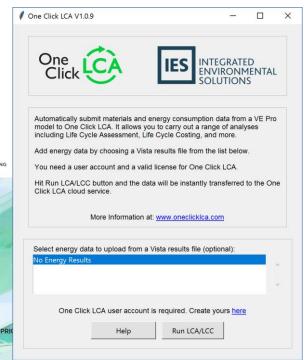
python



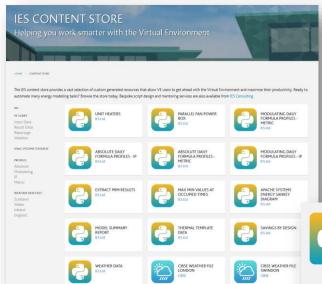
WWW.İESVE.COM UNITED KINGDOM | IRELAND | UNITED STATES OF AMERICA | CANADA | INDIA | AUSTRALIA

Parametric Simulation

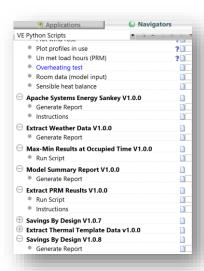
IES


- Run customised parametric simulations directly in the VE
- Expand the capabilities of Hone by generating apr files and to expand its capabilities (constructions, geometry)
- Analyse the results using python and present in automated reports

Partnerships – One Click LCA

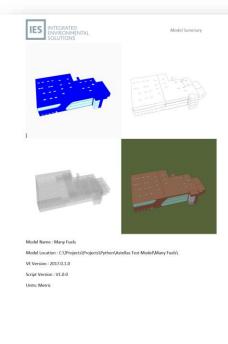

- Enabled by python scripting
- Export energy results and construction data from VE 2018
- Automatically upload data to One Click LCA to perform life cycle assessments

IES Content Store

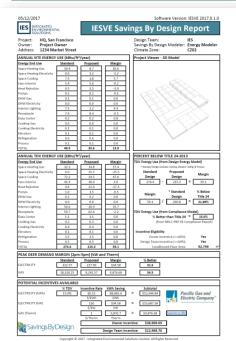


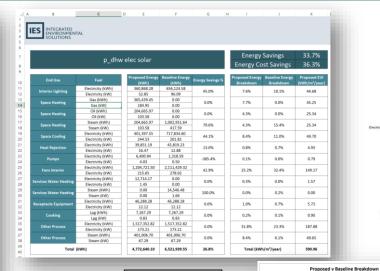
Features:

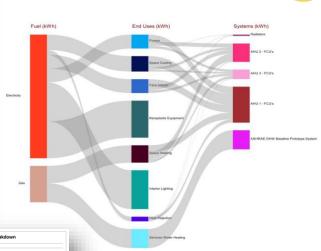
- Download additional paid for and free content
- Python Scripts , Weather Files, HVAC Systems, Profiles
- Install encrypted python scripts
- Run from VE Python Scripts navigator
- Coming Soon User Created Content


VE Python Scripts

IES INTEGRATED ENVIRONMENTAL SOLUTIONS	Apache Systems Data				
1.2. Actual Building HVAC Systems					
System Name	Extract	VAV AHU 3		Radiators	VAV AHU 2
Number of Rooms Assigned	4	48	175	175	48
Total Floor Area (m²)	400.0	4800.0	17500.0	17500.0	4800.0
Heating					
leating Gen Efficiency:	0.81	0.81	0.81	0.81	0.81
Delivery Efficiency:	0.89	0.73	0.92	0.89	0.73
fuel:					
Heating SCoP:	0.72	0.59	0.75	0.72	0.59
Jses CHP:	No	No	No	No	No
HR Effectiveness:	0.0	0.0	0.0	0.0	0.0
HR Return Temp:	21.0	21.0	21.0	21.0	21.0
Cooling					
Cooling Vent Mechanism:		a/c	a/c		a/c
SEER		2.0	2.0		2.0
Delivery Efficiency		0.72	0.88		0.72
uel					
SEER	n/a	1.11	1.35	n/a	1.11
Absorption Chiller		No	No		No
HR Pump & Fan Power		10.0%	10.0%		10.0%
Auxiliary Energy					
Auxiliary Energy Method	SFP & AEV	SFP & AEV	AEV	AEV	SFP & AEV
AEV (W/m²)	1.0	14.82	13.57	1.0	14.82
Off Schedule AEV (W/m²)	0.0	0.0	0.0	0.0	0.0
iystem SFP (W/I/s)	0.0	3.0			3.0
quivalent Energy kWh/m²/y	3.26	48.24	44.18	3.26	48.24


Apache Systems




Thermal Templates

Model Summary

VE Python Scripts – continued...

PRM Results

Proposed

**Supposed forms from gard **Supposed

ApSys Energy Sankey

Savings By Design – California Title 24
Automated pdf report generation

Free IES Faculty Event

DIGITAL DESIGN & ENGINEERING: applications of simulation in BIM

22ND March 9.30 am, Royal Society (London) https://www.iesve.com/discoveries/article/6991/ies-faculty-march-18