

Computational modelling of low energy technologies in built environment: 12 October 2010

Conceptual Design Methods and Tools for Building Services with complex dynamics

Yousaf Khalid, Gavin Murphy University of Strathclyde

Design Process

Dynamics

- Complex Building Physics
 - Natural ventilation (Bouncy and wind)
 - Dynamic internal and external disturbances
- Simultaneous control of Fast and Slow Actuators
 - Under Floor heating
 - Mechanical Ventilation
- Actuator Rate limits

bretrust

Physical Power limits

Holistic Design Method

Modelling

- R-C circuit analogy
- Nonlinear Lumped parameter model
- Linear state space methods

$$\dot{x}(t) = Ax(t) + Bu(t) + Fd(t)$$

$$y(t) = Cx(t) + Du(t) + Ed(t)$$

$$k_1 \frac{dT_i}{dt} = k_2 Q_i - k_3 (T_i - T_o)$$

Symbolic Analysis

- Aerospace, automotive, robotics
- Controllability science

University of Strath

Glasgow

- When controlling air temperature in the building neither the thermal mass of the external Walls or internal Walls have any effect!
- When controlling thermal comfort the thermal mass has an effect the magnitude of which can be derived using one formula

$$u_{trim}(s) = \frac{1}{\beta} \begin{bmatrix} \left(U_{win} A_{win} + V_a \overline{n}_i \rho_a c_{pa} \right) \left(T_a(s) - T_o(s) \right) + \left(2U_w A_w \right) \left(T_a(s) - T_w(s) \right) \\ + \left(U_m A_m \right) \left(T_a(s) - T_m(s) \right) - \left(\sigma_s A_w \right) L_{dir}(s) - \left(k_e \right) P_L(s) - Q_{oc}(s) - Q_{ap}(s) \end{bmatrix}$$

Simulation

• European Simulation Language (ESL)

Models in ESP-r and ESL

Dynamic Domestic Modelling

- Domestic Modelling Procedure (SAP)
 - Quasi Steady State
 - Constant Disturbances
 - Responsivity Factor
- SAP cannot model dynamics of advanced systems without real data
 - Complex Heating e.g. heat pumps and CHP / Lighting with controls/ Renewables
 - Systems represented by one equation in SAP to provide a yearly average
- Dynamics Values

- Allow Dynamic values to be used in a SAP environment
- Values are calculated at small time steps

Energy Estimation

Τo

- Relationships which affect the Energy Estimation of a dwelling
- Assumptions:
 - Air is fully mixed at constant pressure
 - Windows, Roof and Floor in Steady State
 - U-Values taken from SAP
- Purpose of model is not to emulate Future Reality
 - Advanced integration tools such as ESP and IES already exist
- Fundamental Building Physics Model Created
 - Differential equations derived from first principles
 - Put into State Space Form for Controllability Analysis

State Space Representation

Apply Controllability Science to SAP Procedure – dynamic equations ۲ must be represented in State Space Form:

University of

Glasgow

Strathclvde

Mass

Excel Implementation

- Data placed into Excel Columns
- Model set to time resolution of 5 minutes
- Current focus on systems with a fast responsivity
 - gas boilers / direct acting electric heating
- Use of real data in model

hretrust

- Weather Sheffield location Meteonorm software
- Real Free Heats generated
 - Solar Gains (Sheffield location Meteonorm)
 - Appliances Gains (International Energy Agency / Energy Conservation in Buildings and Community Systems Program (ECBCS) Annex 42)
 - Metabolic Gains (based upon BREDEM principles)

Inverse Dynamics

- Control Systems calculate the input required for a desired output
 - This can be achieved by inverting the plant
 - Inverse Dynamics
- A controller based upon Inverse Dynamics
 - Cancel the non-linear dynamics of the system
 - Decouple the controlled variables
- Use of Inverse Dynamics to calculate Dynamic SAP results at each timestep
 - Example: Room Temperature in Controller Design
 - We invert the dynamics of the system to establish what heat is required

University of Strathc

Glasgow

bretr

Optimum Start

- Addition of Optimum Start to Dynamic SAP
 - Particularly required to model Slow acting systems (slow responsivity in SAP) such as underfloor heating
- Dynamically track SAP setpoint based upon power and response of heating system

	Initial conditions							Temperature Initial Conditions					Timestep			
	Define I	Limits of	f Heating Sy	ystem (Wa	atts)				K	Celci	us			Seconds		
	UI	5000				٦	Го		273	0			Т	300		
	LI 🚬	0				٦	Га 📘		283	10						
	G	0.002	minutes			٦	ſs 📘		278	5						
	Qfree	718	Watts			٦	Fft 💙		283	10						
setpoint v	×	time t (h)	Ta(k) (Zone Air)	Ts (k) (Structure)	Tft(k) (Furniture)	Qfree	To - Kelvin	u(k) (heat in Watts)	u(k) (discontinuity)	Set Point - C	Ta(k) in C	StructureTemp in C	Furniture Temp in C	Time (Seconds)	Solar Gains	Appliance Gains
273	0	0	283	278	283	335	278.8	0	0	0	10	5	10	0	0	335
273	1	0.083	282.731	278	283	326	278.8	-4769.7	0	0	9.7307	5.003	10	300	0	326
273	2	0.167	282.562	278.01	282.99	311	278.8	-4735.8	0	0	9.5624	5.006	9.99	600	0	311
2/3	3	0.25	25	Air Temp	in Cent	igrade	•	4703.1	15 -	Struc	t <mark>ure Te</mark> r	np i n		900	0	300
273	4	0.333	20 -	i. i	i			4677.4	10	Ce	ntigrad	e		1200	0	302
213	0	0.417	15	1 10. 1.1	ինդվար			4000.3	10	\sim				1000	0	291
213	0	0.50	10	nur Aller.	- di			4044.7	5 4					1600	0	201
213	/	0.000	5				-Series1	4029.5					—— Se	2400	0	201
273	0	0.007	0 -					4014.0	0 -					2400	0	215
273	10	0.73	96 1	1888 187 187 187 187 187 187 187 187 187	6 21 66 71			4590.2	÷	3198	328	1		3000	0	250
273	11	0.000	10	21 43 43 7 1	76 55 76			4562.6		512	5 4 3 3 7	76		3300	0	256
273	12	0.517	787.055	//8113	187.00		718 8	-15105	0	0	9.0547	5.035	9 /64	3600	0	2/17
273	12	1 083	25 - S	AP Week	lv Heati	ing Pro	ofile	4530	40 TE	urniti	UroTom	0.000	5.104	3900	0	241
273	14	1 167	20	n n			Detet	4514		urniti		p ili		4200	0	240
273	15	1 25	10		· · ·	Set	Point	4503		Cer	ntigrade	•		4500	0	238
273	16	1 333	13					4492	20 📊	Mu	LINUU	(NAMA)	THAT .	4800	0	232
273	17	1 417	10					4476	J.	n na	and the day		L . I M	5100	0	238
273	18	1.5	5			-Zo	ne Air	4472					Ser		0	231
273	19	1 583	0			Tei	mperat	4456	0 +	-				5700	0	232
273	20	1.667	37 1	81 81	53	ure	2	4448		795 595	189 189 183 783	377	971	6000	0	237

Sample Output – 1 of 3

• Air Temperature in Dwelling

bretrust

Sample Output – 2 of 3

• Structure Temperature in Dwelling

Sample Output – 3 of 3

• Internal Mass Temperature in Dwelling

