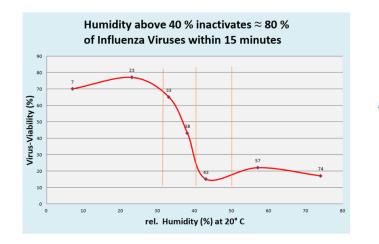
HUMIDITY CONTROL

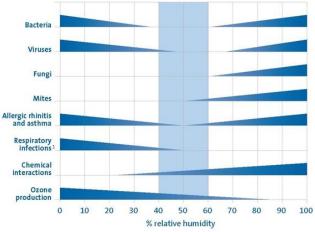
CIBSE

OUR MISSION

- To improve the energy performance of buildings and reduce their carbon footprint.
- To reach out to young professionals and those aspiring to join the industry, supporting them in their professional development.
- To provide a forum for discussion, enabling networking opportunities and promoting collaboration amongst members.

OUR EVENTS

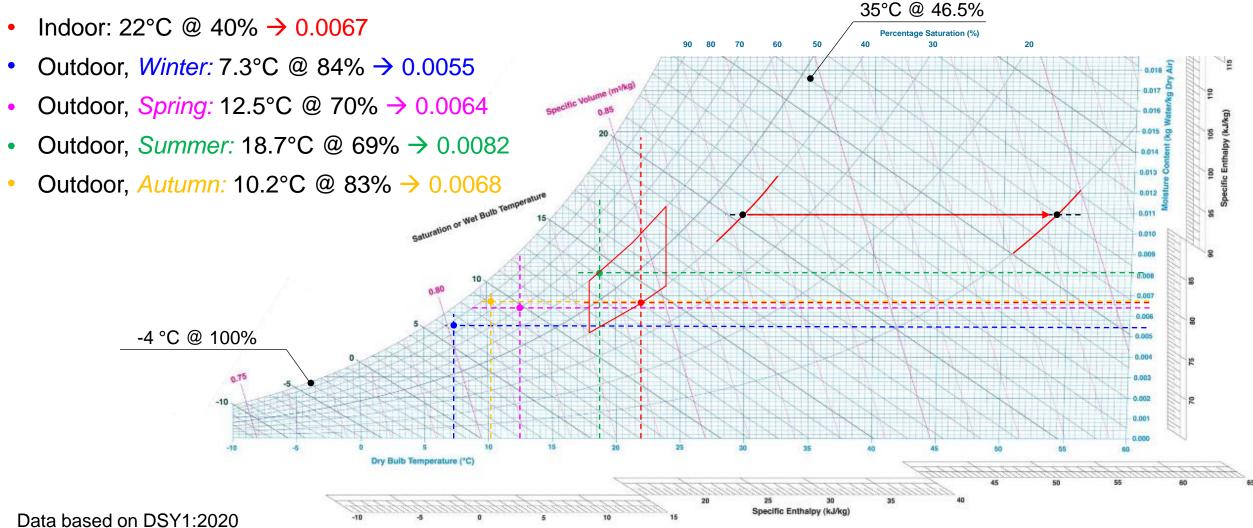




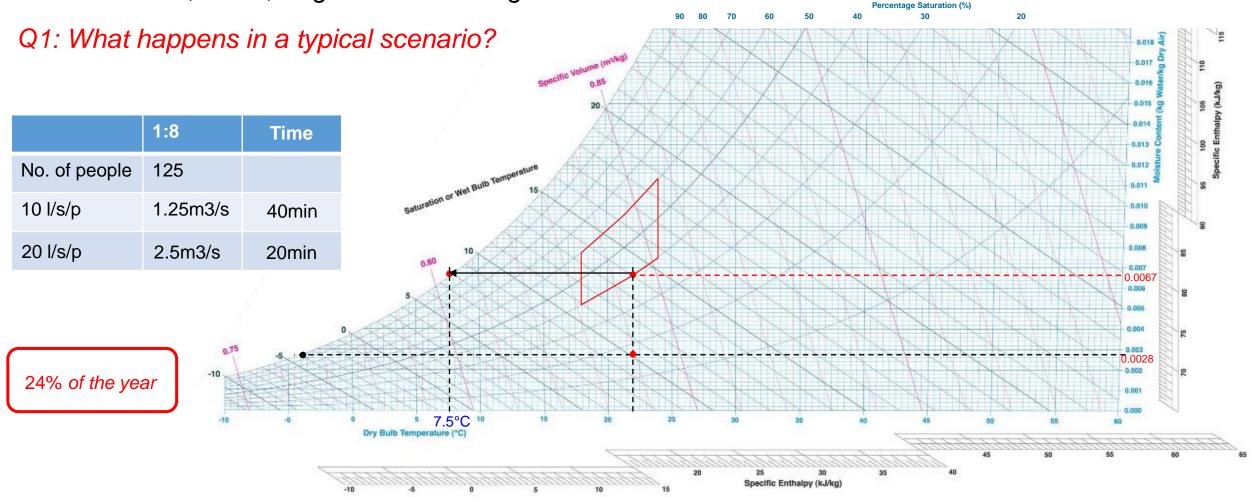
Why?

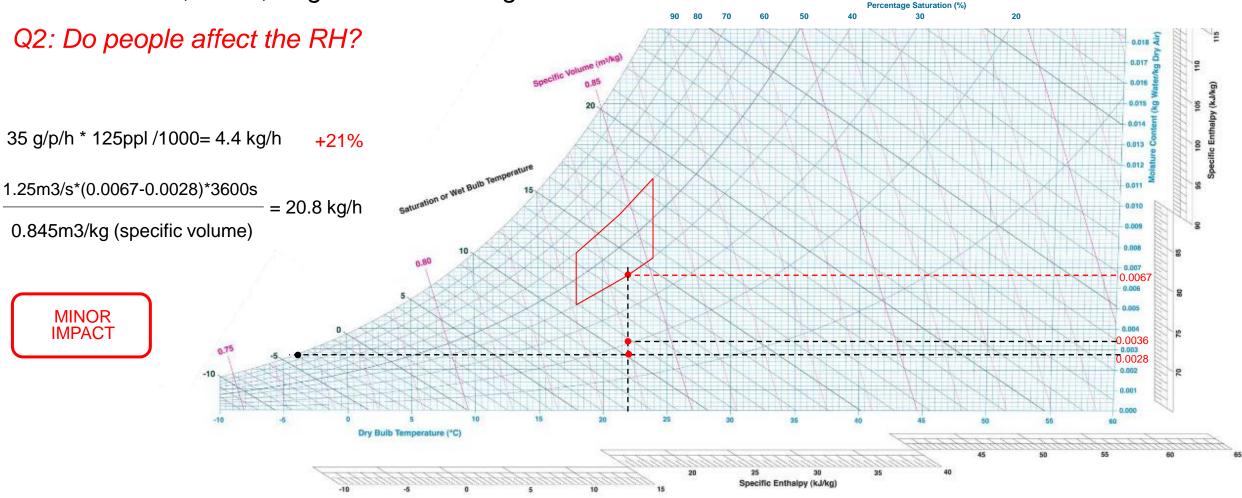

- Human Comfort (40-60%)
- COVID-19
- Valued Engineered out!
- Myths

³Insufficient data above 50% RH. E.M. Sterling, Criteria for Human Exposure to Humidity in Occupied Buildings, 1985 ASHRAE.



Climates Tropical (e.g. Singpore) Semi-tropical (e.g. Hong Kong) Percentage saturation / % 50 40 20____0.030 Temperate (UK) Desert 027 0-025 Based on a barometric pressure of 101-325 kPa Source: CIBSE KS20 0.024 "Practical psychrometry" 0-022 0.020 0.9 Sensible/total heat 0.9 Sensible/total heat 1.0 ratio for water 0.9 added at 30 C 0.019 Comfort envelope 0.000 Dry-bulb temperature / C **** 25 Specific enthalpy / (kJ·kg-1)


The basics


Example

Office: 1000m², 3m H, target Winter: 22degC @ 40% RH

Example Office: 1000m², 3m H, target Winter: 22degC @ 40% RH

Considerations

- COVID: Higher flow rates \rightarrow Higher energy demand
- Climate change \rightarrow Drier lands
- Refurbishments \rightarrow Cold Bridges, Ventilation
- Centralised vs Decentralised \rightarrow RH = f(T)

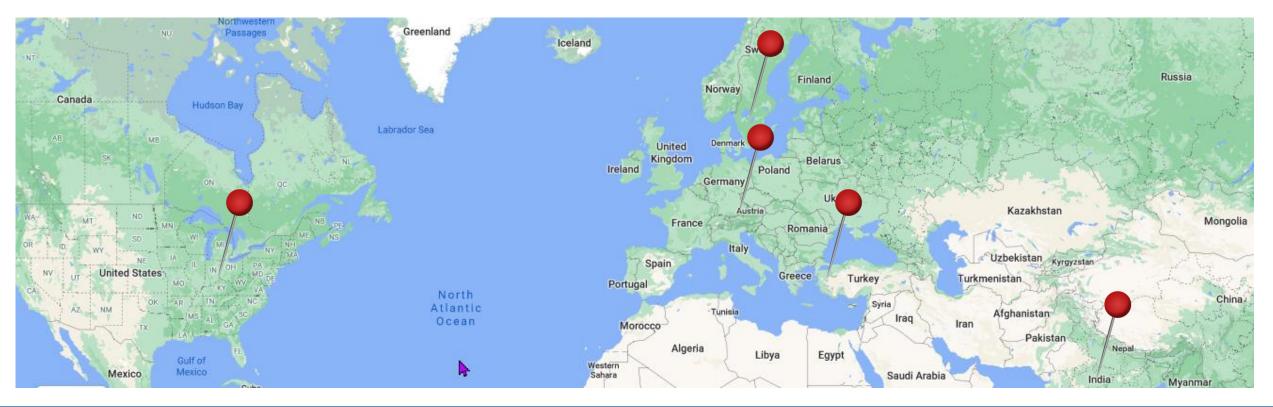
• Passive Humidity Control Measures: David Black

(Global Product Marketing Manager FlaktGroup, CIBSE HVAC Group)

• Active Humidity Control Measures: Dave Marshall-George (UK and Ireland Sales Director, Condair)

• Q&A

Passive Moisture Exchange in AHUs



David Black - Global Product Marketing Manager for Modular Air Handling Units

I've worked in the HVAC sector since 1986 for English, German and Swedish AHU manufacturers.

I am a CIBSE HVAC Group committee member and contributed material for the CIBSE Covid 19 ventilation guidance.

Passive Moisture Control – Summer Benefits

There are three types of Thermal Wheels

Condensation wheel - better known in the UK as a sensible only thermal wheel

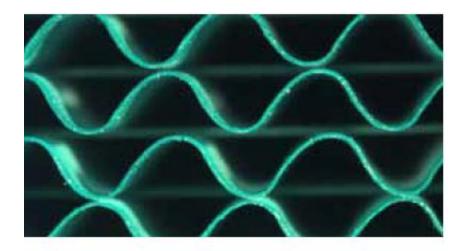
- Consists of smooth, untreated aluminium.
- Humidity efficiency is very low in UK design conditions.
- The use of these wheels is recommended primarily for ventilation systems without mechanical cooling.

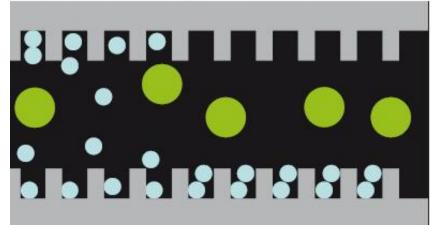
Enthalpy wheel - better known in the UK as a hygroscopic wheel

- Consists of a material treated to form a capillary surface structure which captures moisture.
- The humidity is transmitted by sorption and condensation, with the sorption component being very low.
- Moisture transfer efficiency typically 50% in UK design conditions. Recommended for systems with mechanical cooling.

Sorption wheel - often (incorrectly) described as dessicant

- Consists of a surface that has pores which allow the capture of water vapour molecules but very little else.
- Moisture transfer efficiency >80%. In summer conditions de-humidifies the fresh air supply.
- Particularly recommended for systems with mechanical cooling as the demand load is significantly reduced. Has health benefits in recovering moisture in winter


How Sorption rotors recover moisture


Hygiene

A 4Å molecular sieve has the unique ability to limit adsorption to particles that are smaller than around 4 Angstrom.

Because water vapour has a kinetic diameter of 2.65 Angstrom it is strongly attracted to a 4Å transfer media.

Practically all substances that are regarded as contaminants in the air handling context are larger than 4 Angstrom, which means that they pass through the heat exchanger and are carried away with the exhaust air.

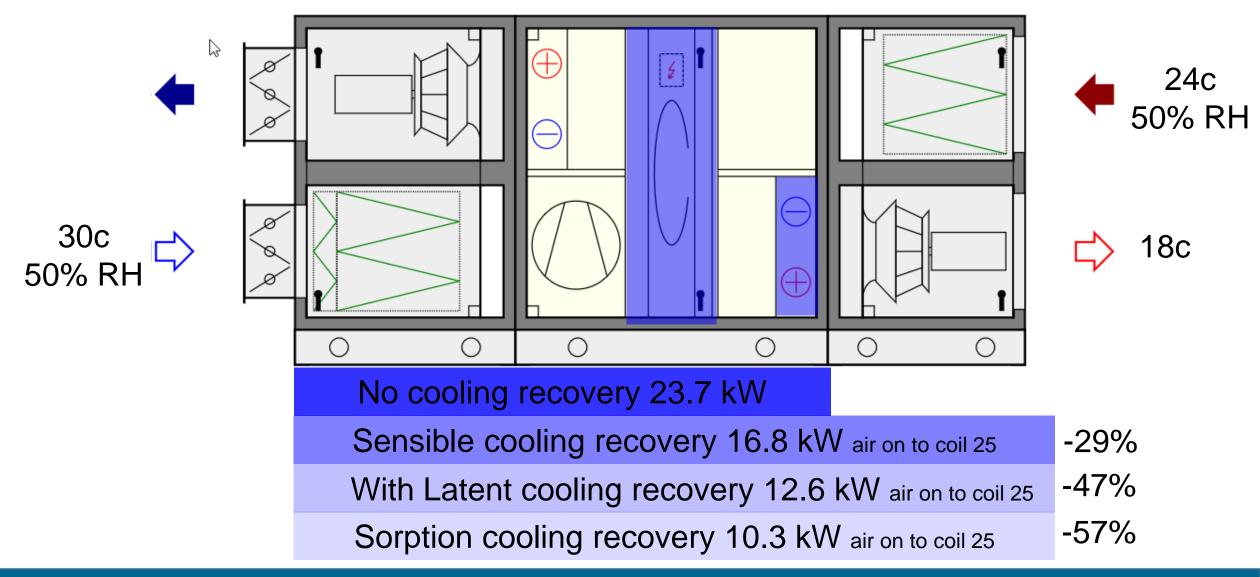
ENERGY EFFICIENCY GUARANTEED

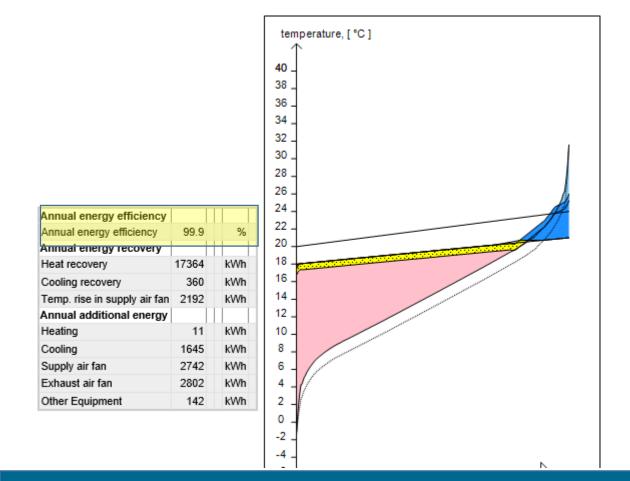
The energy performance data is taken from a EUROVENT certified AHU selection program.

CERTIFIED

The following are guaranteed;

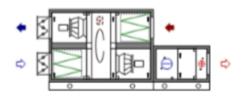
- > Temperature efficiency and pressure drop of the heat recovery
- > Air velocity in the internal cross section


Absorbed electric power of the fan motors



Summer coil demand load: Fan Coil System per m3/s

What is optimal efficiency? Energy diagram-London 84.8%

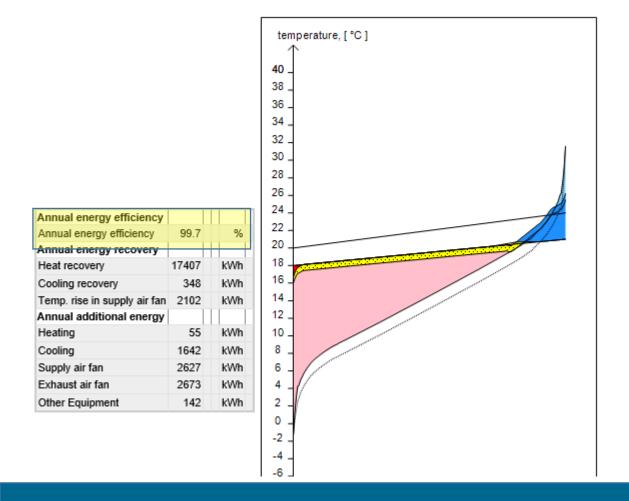

ENERGY CALCULATION

Air handling unit

Dimensioning data	

-

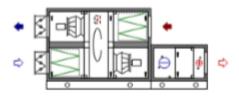
Unit type & Size	eQ Prime - 011
Supply air	1.00 m³/sec
Exhaust air	1.00 m³/sec
Heat recovery	RHE, Semco
SFPv	1.62 kW/(m³/s)
Efficiency, EN308	84.8 %
Heating	7.28 kW
Cooling	7.39 kW
Supply air fan	0.914 kW
Exhaust air fan	0.958 kW



Result

Annual energy recovery	Energy recovery
Annual energy efficiency	100 %
Heat recovery	17364 kWh
Temp. rise in supply air fan	2192 kWh
Cooling recovery	360 kWh
Total	19916 kWh
Annual additional energy	Energy demand
Heating	11 kWh
Heating Cooling	11 kWh 1845 kWh
Cooling	1845 kWh
Cooling Supply air fan	1845 kWh 2742 kWh

What is optimal efficiency? Energy diagram-London 81.3%



ENERGY CALCULATION

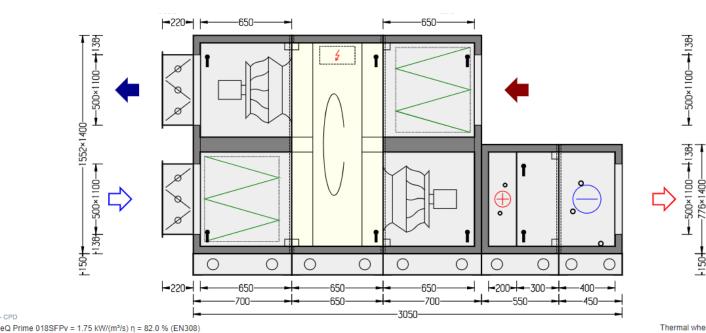
Air handling unit

Dimensioning data

Unit type & Size	eQ Prime - 011
Supply air	1.00 m³/sec
Exhaust air	1.00 m³/sec
Heat recovery	RHE, Semco
SFPv	1.54 kW/(m³/s)
Efficiency, EN308	81.3 %
Heating	7.28 kW
Cooling	7.39 kW
Supply air fan	0.875 kW
Exhaust air fan	0.907 kW

Result

Annual energy recovery	Energy recovery
Annual energy efficiency	100 %
Heat recovery	17407 kWh
Temp. rise in supply air fan	2102 kWh
Cooling recovery	348 kWh
Total	19857 kWh
Annual additional energy	Energy demand
Heating	55 kWh
Cooling	1642 kWh
Supply air fan	2627 kWh
Exhaust air fan	2673 kWh
Other Equipment	142 kWh
Other Equipment Total	142 kWh 7139 kWh



What is optimal efficiency? Comparison summary

Efficiency	81.3%	84.8%
Extra Heat	55 kWh	11 kWh
Extra Cooling	1642 kWh	1645 kWh
Supply Fan	2627 kWh	2742 kWh
Exhaust Fan	2673 kWh	2802 kWh
Total	6997 kWh	7200 kWh

What is optimal configuration?

Price Index	Description
100	ErP compliant plate
114	Counterflow plate
115	IE4 fan & motor
105	IE5 fan & motor
77	Thermal wheel unit
73	Omit frost coil
72	Omit pre filter
71	Heater for demand load
71	Change to Sorption rotor
69	Cooler for demand load
70	Optimal fan selection
61	Smaller unit

Thermal wheel ACON-02617181 -

1-150

SFPv

1.62

1.63

1.57

1.53

1.64

1.60

1.54

1.52

1.54

1.53

1.48

1.75

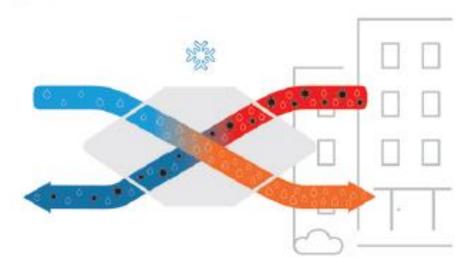
All units are the same height & width

roject - CPD

Α+

Latent plate

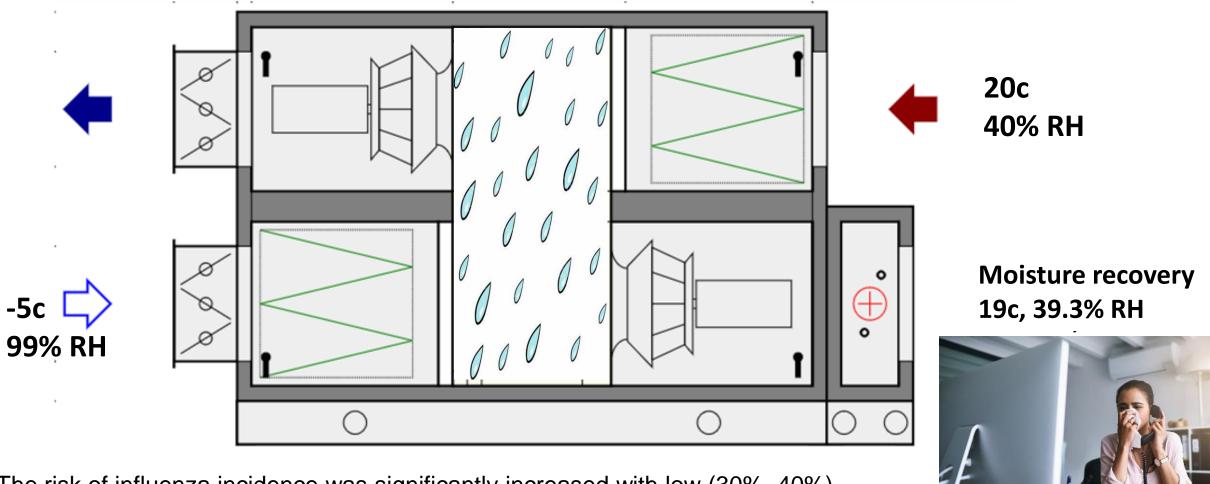
Polybloc are a swiss based manufacturer



Transfers heat and humidity tight against germs and smells

During the winter months we spend about 90% of our time inside buildings. Dry throats, stinging eyes and dry skin are often the uncomfortable results of arid, heated winter air.

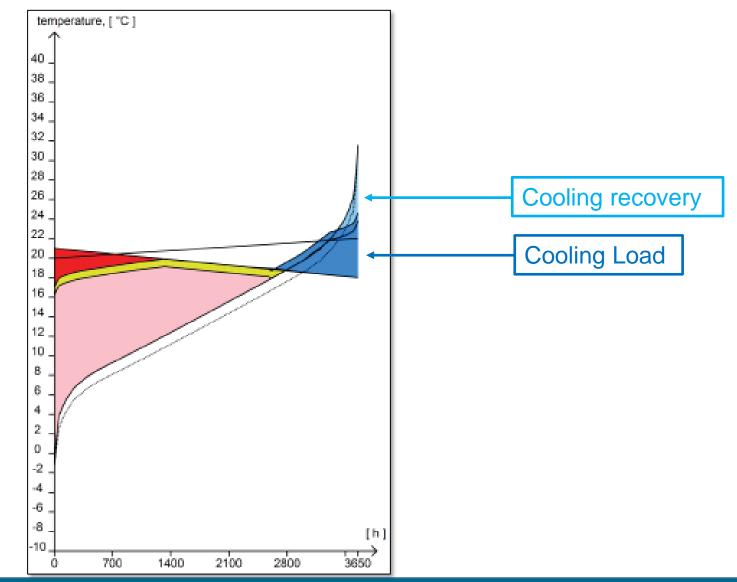
These symptoms can be eliminated by using the Vapobloc from POLYBLOC as cross- and counter-flow pleat heat exchanger. This specially designed energy exchanger transfers the heat and humidity from the return air to the supply air but leaves out smells, spores and bacteria. Vapobloc is ideal for sensitive areas such as hospitals, schools, residential homes and apartment houses.


Polybloc sensible & latent efficiency

·			Low								
Model	Airflow		Airflow		Max width without bypass (mm)	Dry effeiciency (supply side) Winter	Dry effeiciency (supply side) Summer	Dry effeiciency (Exhaust side)	Pressure drop (std conditions)	Latent efficiency (%) Winter	Latent efficiency (%) Summer
eQ-005	0.45	1620 m3/h	540	74.00%	74.50%		207Pa	61.20%	54.50%		
eQ-008	0.78	2790 m3/h	790	74.50%	75.00%		206 Pa	62.10%	55.20%		
eQ-011	1.20	3500 m3/h	890	75.10%	75.50%		200 Pa	63.30%	56.30%		
eQ-014	1.30	3400 m3/h	790	74.60%	75.00%		199 Pa	61.70%	56.60%		
eQ-018	1.75	4100 m3/h	1040	74.40%	74.80%		199Pa	61.70%	56.60%		
eQ-023	2.20	6700 m3/h	1340	75.20%	75.70%		203 Pa	62.80%	56.10%		
eQ-032	3.10	8000 m3/h	1390	75.80%	76.20%		203 Pa	63.90%	57.20%		
eQ-041	3.90	9300 m3/h	1590	75.90%	76.30%		201 Pa	64.10%	57.40%		
eQ-050	4.80	11600 m3/h	1840	76.30%	76.60%		201 Pa	64.70%	58.10%		
eQ-063	6.10	12700 m3/h	2000	76.20%	76.60%		200 Pa	67.80%	58.10%		
eQ-072	7.00	14300 m3/h	2230	76.10%	76.50%		200.00	64.80%	58.10%		

Health benefits of moisture transfer in Winter

Sorption rotor moisture recovery


The risk of influenza incidence was significantly increased with low (30%-40%) relative humidity. RH > 40% greatly reduces the infectivity of virus

Source: Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region.Ji-Eun Park et al. 13th September 2019

Enthalpy Control for Sorption rotors

Cooling Recover- Typical chart for London

Coil load effect with cooling Recovery – Supply air 18c

	Off rotor	Coil load	Coil cost	Annual Cooling recovered
No Cooling recovery	30c / 50%	23.7 kW	846 €	0
Sensible cooling recovery	23.5 / 73.2%	12.6 kW	682€	906 kWh
Sorption cooling recovery	23.5 /53.9%	10.3 kW	624 €	1887 kWh

1 m3/s 30/50% External, 24/50% return Supply temperature 18c

rotor – 82.3% Operating 5 days a week, 14 hours a day

Enthalpy control

We have a function that optimises additional cooling recovery based on enthalpy.

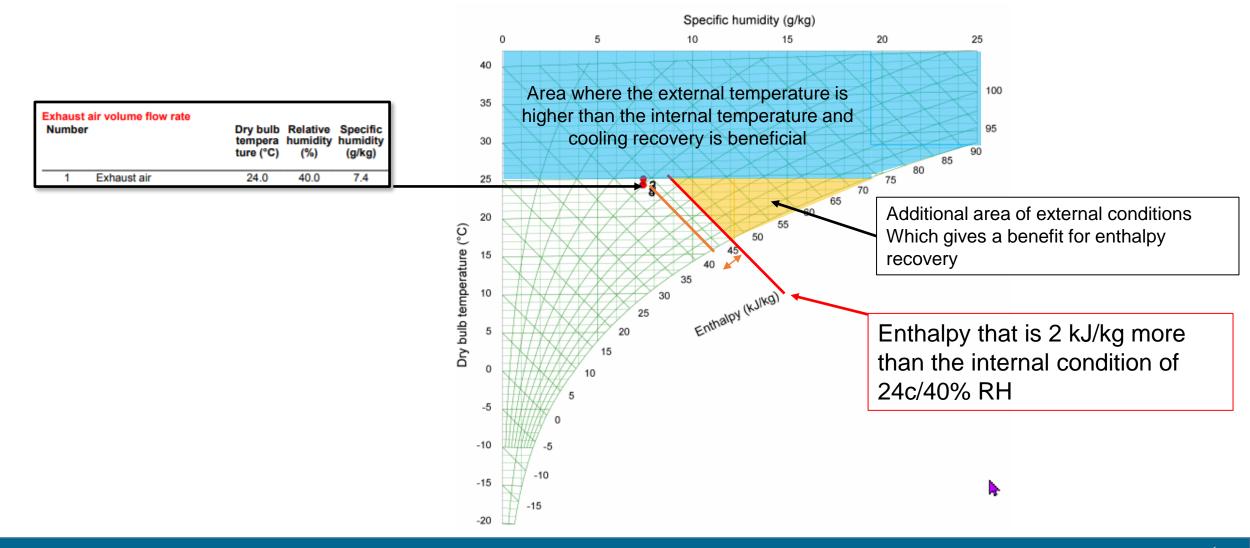
We can run the rotor even if the **external temperature** is **lower** than the **extract** temperature.

If the **external** *humidity* **is high** – as it often is in summer – removing moisture from the fresh air in can reduce the **load on the cooling coil**.

Our controller regulates the rotor based on when there is a cooling demand and the extract air enthalpy is 2kJ/kg lower than the outdoor air enthalpy, the rotor is started at maximum capacity for cooling recovery

Acon										
	Control cabinet Communio	cation Functions Fire protection External connections Designations								
	Overview Temperature Humidity Recovery	Cool		nthalpy based 🗸	~					

Sample calculation based on 1 m3/s – AHU has to deliver air @ 18c


External	Relative	Enthalpy	Off rotor condition	Cooling	Enthalpy	Coil load 18c	Off coil
Temp	humidity	kJ/kg		recovery	recovery	supply	humidity
23.5	75	58.3	23.5/75%	No	-	14.1 kW	89.1%
Internal	Relative	Enthalpy	Off rotor condition	Cooling	Enthalpy	Coil load 18c	Off coil
Temp	humidity	kJ/kg		recovery	recovery	supply	humidity
24.5	40	44.1	24.3/48.6%	No	Yes	8.04 kW	70.9%
Internal	Relative	Enthalpy	Off rotor condition	Cooling	Enthalpy	Coil load 18c	Off coil
Temp	humidity	kJ/kg		recovery	recovery	supply	humidity
26.0	40	47.5	25.6/47.9%	No	Yes	10.1 kW	74.4%
Internal	Relative	Enthalpy	Off rotor condition	Cooling	Enthalpy	Coil load 18c	Off coil
Temp	humidity	kJ/kg		recovery	recovery	supply	humidity
27.0	40	51.5	26.5/42.7%	No	Yes	12.3 kW	72.4%

External	Relative	Enthalpy	External	Relative	Enthalpy
	humidity			humidity	• •
24.0	65	55.0	24.5	60	54.0

Consider an internal condition of 24c/40% RH

Operative case - Summer

Enthalpy control – How to select

To select this function you need to select a RegAsorp wheel and select cooling recovery.

ACON then adds the necessary temperature and humidity sensors.

Acon							
Control cabinet	Communicatio	n Functions	Fire protection	External connections	Designations		
T	emperature	=	enthalpy based 🗸	~			

	GH012/GT012 FT	2:QBM70.7000TNFW	MoF MoF MoF	-	F0021 64	ğ <i>zı</i>	GH012 GT012		
wor – ractory installed and cor	meeteu			-	→ → ST051	GP011	FO011 GF0// TF011	GT051 SV011	GT001

Summary

- Sorption rotors have benefits in both summer and winter
- Use sorption rotors to reduce cooling coil load
- Ensure that the rotor efficiency is optimised
- Consider sizing the cooling coil based on demand load
- Latent recovery plates are available on the market
- Enthalpy control extends the envelope of reduced cooling coil load

HUMIDIFICATION ACTIVE MEASURES

Condair Limited Presenter Dave Marshall-George

Humidifier active measures

Benefits

Low capital costs High steam outputs Simple and quick to maintain

Considerations

High energy consumption High maintenance commitment High spares consumption Potential use of renewable energy

Typical control ±10%RH

Electrode boiler humidifiers

pproxcondair

Benefits

Close control Low spares commitment Any water quality compatible

Considerations

High steam outputs High energy consumption Regular maintenance commitment Potential use of renewable energy

Typical control

±2 to 5%RH depending on application

Resistive humidifiers

High steam outputs Low energy cost Very low spares commitment Any water quality compatible

Considerations

Install costs Regular maintenance Flue

Typical control ±10%RH

Gas-fired humidifiers

Low energy use High steam outputs Low spares commitment Any water quality

Considerations

Install costs Footprint

Typical control

±5 to 10%RH

Steam-to-steam humidifiers

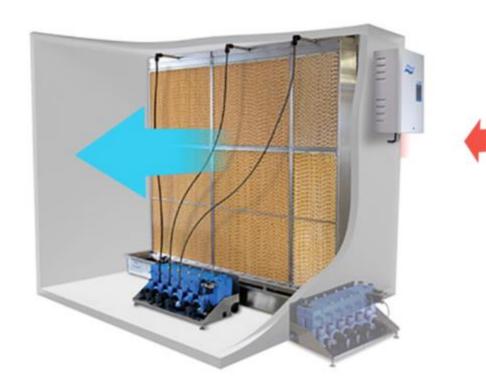
Low energy use High steam outputs Minimal maintenance and spares

Considerations

Valve body material Externally mounting protection required

Typical control ±5%RH

Live steam humidifiers


Distributor pipe for in duct humidification Bn = 1000mm **OptiSorp manifold system** for shortest humidification distance Bn = 250mm

Fan unit for direct room applications

Note: Bn = absorption distance (dependent on humidification load and temperature of airstream)

High humidity outputs Low energy Low maintenance No evaporation distance Adiabatic cooling Potential use of renewable energy

Considerations

Consider pre-heating requirements Space in duct

Typical control ±10%RH

Evaporative media humidifiers

High outputs Multiple AHUs from a single pump station Evaporative cooling effect

Considerations

RO water Stainless steel wet section Need for pre-heating Typical control ±5%RH

High pressure spray – in-duct

Stage and pressure modulation = close control Short section length (from 600mm) Very low maintenance Evaporative cooling effect

Considerations RO water Stainless steel wet section Need for pre-heating

Typical control ±2%RH

Hybrid spray and evaporative humidifiers

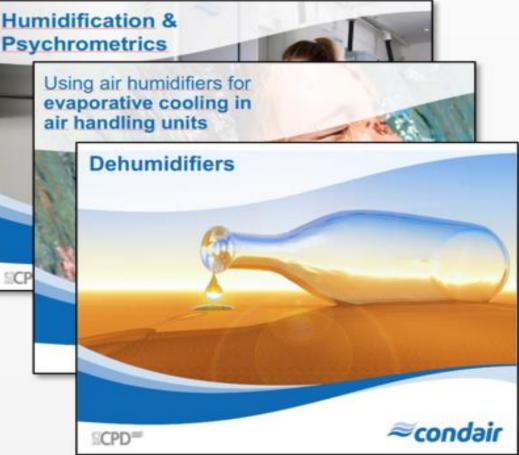
Load calculation

Outside air volume1m3/sExternal ambient-6degCInternal design21degCMoisture differential0.0078Specific volume0.84m3

1m3/s -6degC 100%rh 21degC 50%rh 0.0078 – 0.0022 = 0.0056 0.84m3/kg

Load calculation

Calculation=


<u>1m3/s x 0.0056 x 3600sec</u> .84m3/kg

= Kg/hr or lt/hr

Thank you Any further questions?

Please ask about the complete series of <u>Condair</u> CPDs

www.condair.co.uk Tel: 01903 850200

Today's presenter: Dave Marshall-George, UK and IRE Sales Director

Q & A

