BASIC CONCEPTS FOR NATURAL VENTILATION OF BUILDINGS

Prof. Hazim Awbi

Technologies for Sustainable Built Environments Centre University of Reading, UK

http://www.reading.ac.uk/tsbe

Email: h.b.awbi@reading.ac.uk

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

In *Natural Ventilation* the airflow is due to wind and buoyancy through cracks in the building envelope or purposely installed openings.

Single-Sided Ventilation:

Limited to zones close to the openings

Cross-Ventilation:

Two or more openings on opposite walls - covers a larger zone than the single-sided openings

Stack Ventilation:

Buoyancy-driven gives larger flows

Windcacthers:

Wind and buoyancy driven - effective in warm and temperate climates

Solar-Induced Ventilation:

using the sun to heat building elements to increase buoyancy - more effective in warm climates

19/05/2010

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

Hybrid Ventilation

In *Hybrid* (*Mixed Mode*) *Ventilation* the airflow is due to wind and buoyancy through purposely installed openings in the building envelope supplemented, when necessary, by mechanical systems.

The mechanical component of the hybrid system can be a fan for increasing the ventilation rate, and/or a heat exchanger for heating or cooling the outdoor supply air.

Airflow in Natural Ventilation

Factors Influencing the airflow through openings

- Wind speed
- Wind pressure
- Buoyancy (stack) pressure
- Characteristics of openings (C_d)
- Effective area of multiple openings

Indoor Environmental considerations

- Thermal comfort
- Indoor air quality

Wind Speed

Terrain factors for equation (2).

Terrain	С	a
Open flat country	0.68	0.17
Country with scattered wind breaks	0.52	0.20
Urban	0.35	0.25
City	0.21	0.33

Wind and Stack (Buoyancy) Pressures

Wind Pressure

$$P_w = \frac{1}{2} \rho V^2 C_p \tag{1}$$

The wind speed V is usually calculated at the height of the opening or a reference point on the building (e.g. roof), C_p is the pressure coefficient and ρ is the air density.

The expression
$$V/V_{10} = c H^{a}$$
 is commonly used. (2)

where V is the required wind speed at height H (m)
 V₁₀ is reference wind speed (at 10 m in open country)
 c and a are the terrain factors depending on sheltering

Stack Pressure

$$P_{s} = -\rho g H (T_{i} - T_{o}/T_{i}) = -\rho g H (\Delta T/T_{i})$$
(3)

where T_o is the outdoor air temperature (K) T_i is the indoor air temperature (K) 19/05/2010 *H* is height between two openings^{atural and}

Wind Pressure

The static pressure coefficient (C_p) is defined as:

$$C_{\rho} = (p_{w} - p_{o}) / (\frac{1}{2} \rho V^{2})$$
(4)

where p_w = static pressure at some point on the building (Pa) p_o = static pressure of the free stream (Pa) ρ = density of free stream (kg/m³) V = free stream velocity normally calculated at building height or other reference height (m/s)

Wind pressure coefficients on a pitched roof building

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

Wind Pressure / Surface Coefficients $(C_p) / ...$

The relative volume airflow rate error (r_i) for a specific pair of openings *(i)* can be defined as (Co'stola *et al, 2010)*:

$$r_i = (V_{LOC} - V_{AV}) / V_{AV} = V_{LOC} / V_{AV} - 1$$

where V_{LOC} = air flow rate calculated using C_{p-LOC} V_{AV} = air flow rate calculated using C_{p-AV}

Wind Pressure / Surface Coefficients $(C_p) / ...$

 C_{p-LOC} has the <u>same</u> value as C_{p-AV} for the surface C_{p-LOC} has a <u>different</u> value to C_{p-AV} for the surface

(Co'stola et al, 2010)

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

Wind Pressure / Surface Coefficients (C_p) / ...

Upper and lower bound values of (r) as a function of the wind attack angle for 95% Confidence Interval when only pairs with the largest ΔC_{p-AV} are taken into account. If all surfaces are considered instead of those with ΔC_{p-AV} = maximum then the difference could be much larger.

(α is the roof pitch, Co'stola *et al* 2010).

Stack (Buoyancy) Pressure

In this case the air enters the lower zone (Zone 1) from outside and leaves through an opening on the upper zone (Zone 2) with the flow passing through the opening between the two zones. In general, the temperature of zones 1 and 2 are not equal (here $T_2 > T_1$) and this results in different pressure gradients for each zone as shown in the Figure. The stack or buoyancy pressure for all the openings is calculated relative to that at the lowest opening. The pressure difference between the two external openings at h_1 and h_2 may be calculated using:

$$\Delta p = -\rho g \left[\left(z_1 - h_1 \right) \left(1 - T_0 / T_1 \right) + \left(h_2 - z_1 \right) \left(1 - T_0 / T_2 \right) \right]$$
(5)

where z_1 is the height of the first floor $T_2 \& T_1$ are the mean temperatures of zones 1 & 2.

19/05/2010

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

Simplified Flow Calculation

Mixed-Mode Ventilation Modelling

Flow through an Opening

The flow through an opening can be calculated using the formula:

$$Q = A_{eff} [2 \Delta p / \rho]^{1/2}$$
 (6)

where Δp is the pressure difference across the opening ρ is the fluid density.

The effective area (A_{eff}) is given by: $A_{eff} = C_d A$ (7)

For natural ventilation openings the discharge coefficient (C_d) is not only dependent on type of opening and wind pressure but also on wind direction.

Data on C_d for natural ventilation openings is limited particularly its variation with wind direction. C_d is one of the main difficulties in manual calculation procedures and in network flow models for natural ventilation.

Flow through an Opening / ...

Flow through a Large Opening

The flow through a large single opening can be calculated using the formula:

$$Q = C_d A \sqrt{2\Delta \rho / \rho}$$
 (6)

For buoyancy-driven flow through a <u>small</u> opening:

$$\Delta \rho = -\rho g H (\Delta T/T_i)$$
(3)

$$Q = C_d A_{\sqrt{gH}} \frac{\Delta T}{T_i}$$
(9)

For buoyancy-driven flow through a <u>large</u> opening:

$$Q = \frac{C_d A}{3} \sqrt{g H \frac{\Delta T}{T_i}}$$
(10)

where *H* is the height of the opening. Since this airflow profile varies significantly along the opening height, the airflow is integrated over this height, producing the 1/3 constant in this equation (Awbi, 1996).

Zγ

V_{max}

Η

Effective area of multiple openings

Openings in series:

$$A_{eff} = C_d A = C_{d1} A_1 + C_{d2} A_2 + \dots$$

Openings in parallel:

 $1/A_{eff}^2 = 1/(C_d A)^2 = 1/(C_{d1} A_1)^2 + 1/(C_{d2} A_2)^2 + \dots$

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

Flow through a centre pivoted window What is the effective area?

Combined Flow through an Opening

The total pressure due to wind, stack and a fan can be combined (as shown):

 $\Delta p_t = \Delta p_w + \Delta p_s + \Delta p_f$

 $Q_t \alpha \Delta p_t^n$

The total flow through an opening is:

where *n* is a value between 0.5 and 1.0 depending on the opening dimensions and type of flow (laminar or turbulent), e.g. n = 0.5 for a large opening or 0.67 for a small opening.

It is also possible to calculate the flow due to each pressure separately and combine these as follows:

$$Q_t = [Q_w^{1/n} + Q_s^{1/n} + Q_f^{1/n}]^n$$
(8)

A good approximation for large openings is as follows:

$$Q_t = [Q_w^2 + Q_s^2 + Q_f^2]^{\frac{1}{2}}$$
(9)

Single-Sided Ventilation

The depth should be < 2.5 H

Cross-Ventilation

19/05/2010

Single-Sided Ventilation – CFD Images

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

Cross-Ventilation – CFD Images

Stack Ventilation

Queen's Building (De Montfort University) CIBSE BSG Seminar: Natural and

19/05/2010

Mixed-Mode Ventilation Modelling

Natural Ventilation/... Windcathchers

- Bi-directional flow with supply and extract
- Wind and buoyancy driven
- Flow-control either by the user or via sensors
- Suitable for large areas
- Usually requires roof access but flow can be ducted

Natural Ventilation/... Windcathchers

L basters

Velocity vectors for the windcatcher with a fan blowing air centrally down (Hughes & Ghani, 2008)

Solar-Induced Ventilation

Solar Wall (Trombe Wall)

Solar Chimney

Solar Roof

Thermal Comfort

- Standard thermal comfort models (e.g. Fanger's) are not usually suitable for naturally ventilated buildings as they are based on <u>uniform</u> thermal environment.
- Adaptive thermal comfort models are often used to allow for zone and diurnal/seasonal variations in the indoor thermal conditions.
- Thermal comfort models that are developed for non-uniform thermal environments are more suitable, e.g. Fiala's model and the CBE (Center for the Built Environment, University of California, Berkeley) model.

Indoor Air Quality

As control of ventilation rates is difficult for naturally ventilated buildings, attention should be given to the minimum ventilation rate that a system can be expected to provide. If this is below the minimum recommended rate for the building then a hybrid option should be contemplated. Failure to achieve this could cause poor indoor air quality issues and possible SBS symptoms.

(Fisk, et al. 2003)

CFD for Natural Ventilation

Why Use CFD for Natural Ventilation?

- Lack of confidence in pressure coefficient data for winddriven flow calculations
- Lack of knowledge of effective opening area (i.e. C_d)
- Difficulty in differentiating between air supply and extract openings (dependent on wind direction, turbulence, temperature difference, etc.)
- Calculations are needed for different wind directions but classical methods cannot accurately predict the effect of wind direction
- Usually room air movement predictions are needed in addition to air flow calculation
- The interaction between mechanical and natural systems is difficult to predict by standard calculation methods

CFD Modelling of Natural Ventilation

Building model

The translation of a real building into an "electronic model". Most CFD codes can import CAD files but this still requires some engineering and modelling skills.

Air inlets and outlets

- Air supply devices (grilles, louvers, etc.) can be complex and some simplification is needed.
- Understanding of device airflow characteristics will provide more accurate modelling.

Obstructions

Both internal and external flows are greatly influenced by the size and location of obstructions. Can be passive or emit heat and pollution.

19/05/2010

CFD Modelling / ...

Heat and pollution sources

Internal or external heat and pollution sources should be accurately positioned and emission of heat and/or pollution from them should be specified.

Computational grid

External flows usually require a large number of computational cells for accurate results. Therefore, convergence can sometimes be difficult.

Turbulence modelling can be challenging specially where large areas of flow separation occur.

Simulation

Sometimes a dynamic simulation is necessary which can be very CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

CFD Modelling Techniques

There are two approaches –

Internal flow simulation:

This requires boundary conditions at inlets & outlets which may be obtained from wind pressure data for the openings or CFD simulations for the whole site.

Coupled Internal and external flow simulation: This requires climatic data, wind profiles and sheltering of surrounding structures.

Examples of CFD Modelling

Single-Sided Ventilation (Buoyancy only)

Room with lower and upper openings

3-Storey Dormitory Building

Single-Sided Ventilation \ cont ...

Buoyancy-Driven Ventilation

Internal flow modelling <u>only</u> with zero pressure at openings and zero gradients for velocity and temperature (Allocca, Chen & Glicksman, 2003).

Internal and external flow modelling. The interaction between the flow in rooms at different level is clearly visible. This is due to the plume rising from low to high levels.

Examples of CFD Modelling / ...

Passive Ventilation

Floor displacement flow by passive air ventilation: cooling coil, wall and floor cavities, perforated floor

Velocity vectors in a vertical plane across the middle of the model perpendicular to the external cavity wall with cooling coil

Examples of CFD Modelling / ...

Pressure Distribution

Pressure coefficients from standard $k-\epsilon$ turbulence model with wind-tunnel values

Pressure coefficients from LES turbulence model with wind-tunnel values

Distribution of pressure coefficients around the building (Kurabuchi, *et al*, 2000)

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling

CONCLUSIONS

- An understanding of the basic principles are necessary for meaningful modelling of naturally ventilated buildings.
- Attention should be given to representing opening geometry, pressure and other flow characteristics
- To be able to evaluate thermal comfort and indoor air quality CFD is often required.
- Where possible coupling of the external wind flow with internal flow should be used in a CFD simulation.

Thank you

Questions?

CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling