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Overview 

● Quick summary of the problem 

● Identifying the key issues: 

– Improving simulation techniques 

– Accounting for uncertainty 

– Incorporating non-technical factors 

● Proposing a way forward: 

A due diligence framework for 
energy performance risk management 



Drivers 

● Climate Change Act 2008 

● Net 80% reduction on 1990 emissions by 2050 

● At least 26% reduction on 1990 emissions by 2020 

● Low Carbon Transition Plan 2009 

● Emission cuts of 18% on 2008 levels by 2020 

● Over a one third reduction on 1990 levels 

● Zero carbon new non-domestic 
construction by 2019 

● Changes to Building Regulations 



The big picture 
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CO2 emissions by end use 
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Energy benchmarks 

ECON19 
Office Type 1 Office Type 2 Office Type 3 Office Type 4 

G.P. Typ. G.P. Typ. G.P. Typ. G.P. Typ. 

Non-electric (kWh/m2.yr) 79 151 79 151 97 178 114 210 

Electricity (kWh/m2.yr) 33 54 54 85 128 226 234 358 

Total CO2 (kgCO2/m2.yr) 32 57 43 73 85 151 143 226 

CIBSE General Office 

Non-electric (kWh/m2.yr) 120 

Electricity (kWh/m2.yr) 95 

Total CO2 (kgCO2/m2.yr) 75 

National Trust 
Good 

Practice 
Best 

Practice 
Innovative Pioneering 

Non-electric (kWh/m2.yr) 79 47 30 20 

Electricity (kWh/m2.yr) 54 43 35 25 

Total CO2 (kgCO2/m2.yr) 40 30 15 0 

Gething & Bordass 2006 

EEBP Energy Consumption Guide 19 1998 

CIBSE TM46 2008 



DEC data 

● Operational i.e. ‘real’ 

● Distribution of ratings 

 Source: 
http://www.cse.org.uk/pages/resources/open-data 

http://www.cse.org.uk/pages/resources/open-data
http://www.cse.org.uk/pages/resources/open-data
http://www.cse.org.uk/pages/resources/open-data


DEC data analysis 

CIBSE TM46 
Benchmarks 
(used for DECs) 

Schools and 
seasonal public 
buildings 

Non-electric (kWh/m2.yr) 40 

Electricity (kWh/m2.yr) 150 

Total CO2 (kgCO2/m2.yr) 50.5 

● Wider variation in non-
electric than electricity 
energy use 

● Mean electricity use close 
to benchmark 

● Mean non-electric use 
lower than benchmark 



The performance gap 

● Comparison of design and 
operational 

● 157% increase on design 
estimate 

Adapted from Bordass 1999 



CarbonBuzz 

● Smallest difference: -33% 

● Biggest difference: 401% 

● Median difference: 71% 

 Source: http://www.carbonbuzz.org 

 

http://www.carbonbuzz.org/


Context 

● Ambitious CO2 targets for new build 

● Demonstrating operational performance 

● Use of typical/good practice benchmarks  

● DEC dataset illustrates variability 

● CarbonBuzz illustrates performance gap 



Uses of simulation 

● No longer a niche technique 

● Part L / EPC NCM calculations 
comparison of design against 'notional' / 'typical'  
under standard scenarios; no unregulated loads 

● Inappropriate for energy prediction 

● Does the industry get this? 



Calibration 

● Good results are possible 
...for a specific building 

● But what to calibrate against? 

● Can improve input data 

● Leading to better benchmarks 

● Of limited use in improving energy 
prediction generally 



Uncertainty 

● Do benchmarks reflect future building? 

● How do you account for this uncertainty? 

– Sensitivity analysis 
 (impact of individual parameters) 

– Monte Carlo analysis 
 (repeated simulations using parameter values 
 drawn from probability distributions) 

– Stochastic models 
 (probabilistic variation in input data) 

● Techniques should become mainstream 
(a plea to tool developers) 



What's the problem? 
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We just can't predict! 

● Complex socio-technical systems 

● Many non-technical factors: 

● How do we account for these? 



Robust design (1) 

● Technical complexity 
itself is not the problem 

● Needs careful design to 
ensure robustness 

● Vigilance is the price of 
(technical) complexity 

● Robustness can help 
reduce uncertainty 

 
Bordass, Leaman, Ruyssevelt 1999 



Robust design (2) 

A 

A’ 

B’ 

B 

● A outperforms 
B in theory 

● B outperforms 
A in practice 

● Technical 
sophistication 
may increase 
uncertainty 

● Robustness 
can reduce 
uncertainty 



Risk management 

● Performance-gap represents risk 

● Simulation models need to consider 
uncertainty 

● Also need to integrate non-technical 
factors 

● Compare designs on the basis of 
performance and risk 

● How to evaluate this risk (rigorously)? 



What other techniques? 

● Regression models 

– Great for predicting the past 
(given sufficient data) 

● Neural networks 

– Great given sufficient training 

● Bayesian networks 

– Based on probabilistic inference 

– Allow reasoning with incomplete data 

– Integrate quantitative and qualitative data 



Probability 

● Objective (frequentist) probability 

– The long-run or limiting frequency of an event 

 

● Subjective (Bayesian) probability 

– Can be used with degrees of belief 

– Derived from Bayes’ Rule 

 
 

– Pr(A) represents prior probability 

– Pr(A|B) represents posterior probability 
 given some evidence B. 

 

 

 

 



Bayesian inference 

● Allows reasoning under uncertainty 

● Updating initial beliefs in the light of new 
observations 

● Pragmatic approach applicable to real-life 
problems: 

– Cracking the Enigma 

– Medical diagnosis 

– Spam filtering 

– Reliability prediction 



Bayesian networks (1) 

● Model cause and effect relationships 

● Use Bayesian inference techniques 

● Allow reasoning from cause to effect 
(prognosis) and vice versa (diagnosis) 

● Graphical models are transparent and 
auditable 



Bayesian networks (2) 

● “directed acyclic graphs and associated 
probability tables” 

– Nodes represent uncertain variables 

– Edges represent causal or influential links 

– Tables describes the probabilistic relationship 
between parent and child nodes 





Causal relationships 

Example Project Performance Network 



Example Project Performance Network 

Probabilistic relationships 
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Example Project Performance Network 

Empirical data 
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Example Project Performance Network 

Prognosis (1) 



Example Project Performance Network 

Prognosis (2) 



Example Project Performance Network 

Diagnosis 



Creating a useful tool 

● Data gathering 

– Literature review 

– Semi-structured interviews 

● Derivation of causal maps 

● Conversion to Bayesian networks 

● Probability encoding 

– Empirical data 

– Structured interviews 

Nadkarni & Shenoy 2004 



Case study building 

● TSB Building 
Performance 
Evaluation project 

● Wireless energy and 
environmental 
monitoring 

● Workshops and 
interviews with design 
team, tenants and 
management 

 



Summary 

● Simulation isn't the whole story 

● Need to consider uncertainty 

– Technical 

– Non-technical 

● “Energy Performance Risk Management” 

...using Bayesian Networks to develop a due-
diligence framework for clients and designers 



Thank you 

For more information: 
n.o.doylend@lboro.ac.uk 
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