

A STUDY INTO THE ACCURACY OF RESULTS FROM COMPUTERISED LIGHTING DESIGN

JANUARY 2010

Contents

Introduction 6
Aim 7
Technical Content 8

1. Primary Variables 8
a. Reflectance Values 8
b. Obstructions to the Working Plane 12
c. Maintenance Factor 18
2. Secondary Variables 23
a. Linear Source Calculations 23
b. Mathematical Engine Accuracy 48
c. Lamp Temperature 52
d. Voltage Fluctuation 53
e. Light Meter Accuracy 55
f. Lamp Lumen Output 56
g. Fixture Photometric Measurement 57
Conclusion 58
Evaluation \& Reflection 60
Appendices
LG7 Compliance Powerpoint Presentation Al
Extract from Dialux Users Guide A9
TM5 Photometric Data presentation A10
References R1

Introduction

It is intended to show in this Technical Report that the accuracy of present day computerised lighting design programs is little different to the use of the Lumen Design Method 30 years ago. When I was at college studying illuminating engineering in 1979 my tutor made a statement; "If the measured results of a lighting design are within 20% of the calculated value then you have done well". This seemed like a very bold statement to make even 30 years ago when we were carrying out lighting design by manual calculations, but how can it be true when we have modern fast computers capable of vast ammounts of complex calculations in seconds?

There are many stages involved in the lighting design process, and the calculations themselves are but a small part. However, in the majority of cases the instructions received from an architect or client will consist primarily of CAD drawings, together with a brief specification of the proposed areas. Therefore, as a great deal of information is either not available, or indeed unknown, it necessarily follows that certain assumptions will have to be made so that the design process can move forward. These assumptions form part of the problem. Any professional engineer will make assumptions based upon 'good design practice', but with the best will in the world the results can be anything but similar.

It is with this intention of 'good design practice' that we can base the study on, and carry out calculations on, so that an evaluation and comparison can be made against various scenarios. This will eventually lead us to evaluate the accuracy of calculated results as compared with measured results.

Aim of the Report

The intention is to show that over the last 30 years, whilst the methods employed in lighting design may have changed significantly, the accuracy of results has not. Many people who rely on calculated results regard the values produced as being infinitely accurate. Whilst this is true in purely mathematical models, lighting design relies heavily on variables, which in most cases are assumed. This can and does mean that results can be widespread, with variances in excess of 20%. There are many instances where a consulting engineer or contractor takes a light meter around a building to check that illuminance values exceed the minimum values in the specification. When illuminance targets are not met, it is always assumed that the fault must lie either with the lighting designer or the luminaire used. No consideration is given to the variables within the design process, which are inevitably the cause of most inaccuracies. Within this report the word 'variance' is not a statistical unit, and means 'variation'. The report will show how these variances occur, and to what extent, whilst using fundamental lighting principles. In other words "Getting Back to Basics".

Technical Content

The first consideration is for variables. These values or procedures can be described as being either Primary or Secondary to the design process. Primary Variables are those which directly affect the design results due to assumptions made by the designer, and Secondary Variables, which are outside the control of the designer, yet still can affect the resultant values.

1. Primary Variables

a. Reflectance Values

The incident light at any point within a room is made up of direct light from each luminaire, and reflected light from the room and other surfaces. The reflected light component consists usually of light that has been interreflected either once or many times. Reflectances are therefore critical for accurate calculation of illuminances, whether this is by using the Lumen Method' or by computer.

If the amount of light flux incident on a surface is fixed, then the only variable to determine that surface's visibility or apparant brightness is it's reflectance. Illuminance cannot be seen, it is only the exitant illuminance or luminance of a surface that can.

$$
e_{0} \square \frac{\square \unrhd_{0}}{\square_{0}}
$$

Where E_{s} is the illuminance on surface S
L_{s} is the luminance from surface S
ρ_{s} is the reflectance of surface S

If the equation is rearranged slightly:

$$
\imath_{Q} \square \frac{\left.e_{0} \cdot\right]_{0}}{\square}
$$

The luminance (or brightness) is equal to the product of illuminance and reflectance divided by a constant. Therefore, an increase in reflectance value of a surface will bring about a requirement for less incident light to produce the same brightness effect.

When a rectangular room has luminaires suspended from the ceiling (Fig. 1.1) it is necessary to consider the cavity formed as having a lower reflectance
than the ceiling alone. In practice, this must be taken into account only if the cavity height is greater than one sixth² of the height from working plane to the luminaire plane, H_{m}.

Fig. 1.1:

The effective reflectance of the ceiling cavity is given by Ken Lumsden in Lamps and Lighting ${ }^{3}$ as being:

Where $\infty_{\square}=$ plan area of the ceiling
$\infty_{\infty}=$ total area of all surfaces within the ceiling cavity
$]_{\square}$ = average reflectance of all surfaces within the ceiling cavity

The derivation of the equation is explained by AR Bean and RH Simons in their book, Lighting Engineering: Applied Calculations ${ }^{4}$. The average reflectance of the ceiling cavity \square_{\square} can be obtained from the following formula:

$$
\square_{\square} \square \frac{\square_{\square 0_{母}}}{\square_{\square} \square 2}
$$

Where $\square_{\square}=$ the ceiling cavity index
[] = ceiling reflectance
$]_{8}=$ reflectance of upper wall surfaces

And the ceiling cavity index \square_{\square} is derived in a similar manner to the room index, namely:

$$
\square_{\square} \frac{\square \square}{\text { oi } \pi \simeq \square}
$$

\square ๆ

Where $i_{0}=$ the luminaire suspension depth
$之=$ length of the room (m)
$\square=$ width of the room (m)

This virtual or effective ceiling reflectance and height can then be used in the Lumen Method calculation to establish illuminance levels, and also in carrying out flux transfer evaluation. However, when using computerised design programs such as Dialux and Relux, these calculations are carried out by the program as part of their radiosity evaluation.

Recommended reflectance values of room surfaces are to be found in the CIBSE Code of Practice ${ }^{5}$ and EN12464-16. The recommended values are given as 0.7-0.9 for ceilings, 0.5-0.8 for walls, and 0.2-0.4 for the floor. In practice though the values of 70% for ceilings, 50% for walls, and 20% for floors have been used as the standard, working on the worst case scenario. These values were suitable in the 1970s as being representative of standard expected surface finishes, but use of accurate modern values will show a marked difference in the calculation. These values are also found in the Dialux User Manual $V 4.6$ as being standard practice ${ }^{7}$ in the UK. [see page A9]

I carried out research in 2007 to look at the effect on LG7 compliance by using more realistic reflectance values for the room surfaces. A Powerpoint presentation was prepared and is to be found in the Appendix. In the past, Floor reflectance was taken at 20% due to the wide use of wood, linoleum and dark carpeting in the 1950s and 1960s. As designs were carried out using the Lumen Method, the luminaire UF needed to be readily available, and although UF values could be re-calculated for different floor reflectances, this was rarely done. This was due to the drawn-out work involved using conversion tables in CIBSE Technical Memorandum 5. During the research I contacted Europe's largest supplier of carpet tiles, Interface PLC, to find out what plain coloured tiles are the most popular, and was told that it is their Palette 2000 range. Unfortunately, there are 80 different colours within the range but I was given each of their respective reflectance values. The selection of 4 tiles as shown on page A3 illustrates the wide variety of choice, coupled with reflectance values. A value of $30-40 \%$ is more realistic than the
norm of 20%. The use of more accurate values is easily available now with the internet, as long as the information is given by the client.

The same situation occurs with ceiling reflectances. provide reflectance values for their ceiling tiles, standard white fibre having a value of 83%. This is a far cry from the 70% normally used. However, whatever the ceiling is, the exact reflectance value is necessary to establish accuracy.

Likewise, it is normal design practice to use 50% reflectance value for the walls. Further investigation revealed that Dulux Trade Paints produce a Magnolia Matt paint which is their most popular wall coating for the trade. This has a reflectance of 78%.

If the average horizontal illuminance in a sample room is calculated, firstly with 'standard' surface reflectances of $70 \% / 50 \% / 20 \%$, and then with the $83 \% / 78 \% / 30 \%$ values referred to above, we can compare the results. From the calculation summary sheets used in Dialux the following illuminance values are seen:

Height of Room: 2.700 m , Mounting Height: 2.700 m , Maintenance factor:
Values in Lux, Scale 1:321
0.80

Surface	$\rho[\%]$	$E_{a v}[\mid x]$	$E_{\min }[\mid x]$	$E_{\max }[\mid x]$	$u 0$
Workplane	$/$	342	279	417	0.815
Floor	20	331	283	358	0.856
Ceiling	70	105	70	696	0.669
Walls (4)	50	242	106	932	$/$

Workplane:
0.760 m

Boundary Zone: $\quad 0.500 \mathrm{~m}$
Illuminance Quotient (according to LG7): Walls / Working Plane: 0.804, Ceiling / Working Plane: 0.307.
Fig. 1.2:
Room calculation in Dialux using 70\%/50\%/20\% reflectance values.

Fig. 1.3:
Room calculation in Dialux using 83\%/78\%/30\% reflectance values.

As can be seen from Fig. 1.2 the average horizontal illuminance on the working plane is 342 lux using $70 \% / 50 \% / 20 \%$ reflectances. By increasing the reflectance values to $83 \% / 78 \% / 30 \%$ the illuminance value increases to 423 lux as shown in Fig. 1.3. This means that a variance (or inaccuracy) of $+23.6 \%$ can be experienced if standard reflectance values are used in the design instead of accurate figures.

b. Obstructions to the Working Plane

The majority of designs are carried out for an 'unobstructed working plane'. In practice, this is far from realistic, with a modern office having desks, filing cabinets, and chairs. Also, windows, doors, notice boards and blinds will affect the calculations. In industrial areas the addition of storage racking or machinery will in most cases reduce working plane illuminance levels by as much as 50\%.

For the purposes of this report I have looked at a typical office and carried out a calculation as a standard room with no doors, windows or furniture installed. I then carried out the same calculation but with the objects added as a comparison. The results are as follows:

Fig. 2.1:
Room calculation in Dialux without furniture, windows and doors.

Fig. 2.2:
3D view from Dialux of unfurnished room, as calculated above.

Fig. 2.3:
Room calculation in Dialux furnished with furniture, windows and doors.

Fig. 2.4:
3D view from Dialux of furnished room, as calculated above.

The calculations show that an average horizontal illuminance at desk height of 466 lux is achieved in the unfurnished room, whilst a figure of 429 lux is achieved in the furnished room. This means that a variance of -7.9% can be expected for office projects, when furniture and other objects are not taken into account.

This can be illustrated further if a similar calculation is carried out in an industrial area. The results are as follows:

Fig. 2.5:
Warehouse calculation in Dialux with unobstructed working plane.

Fig. 2.6:
3D view of warehouse from Dialux of unobstructed working plane, as calculated above.

Fig. 2.7:
Warehouse calculation in Dialux with high level racking obstructing the working plane, which in this case is the floor.

Fig. 2.8:
3D view of warehouse from Dialux showing the effect of high level racking, as calculated above.

From the calculations shown above the average horizontal illuminance at floor level reduces from 192 lux unobstructed to 105 lux with the shelving. This is a variance of -45.3%, which is common within this type of area. The high
variance can be illustrated logically by looking at a reference point at the centre of the room. With an unobstructed working plane the reference point receives light flux directly from all of the luminaires (Fig. 2.9). However, when the racking is in place the point receives flux directly only from a single row (Fig. 2.10). This reduces the direct component drastically, hence the high variable of 45.3%.

Fig. 2.9:
An unobstructed point on the working plane receives light from other luminaires.

Fig. 2.10:
An obstructed point receives light from fewer luminaires.

It must be remembered that as computers become more sophisticated and programs more complex, the need to speed up calculations grows. In Dialux there is an option in the calculation menu to take furniture and objects out of the calculation itself. Whilst this may be useful in certain circumstances it must never be actioned when furniture is installed, and accurate results are required. In this case it would be far better to suffer a longer calculation time rather than inaccurate results. The vast majority of rooms we have to deal with in lighting design have obstructions in some form or other. If the higher value of variance was used in the evaluation process at the end of this report it would inevitably make computerised lighting design appear untenable. In addition, CAD drawings that I have received from clients for warehouse areas nearly always contain details of racking systems, if intended to be installed. Therefore, for the purpose of acceptability, I propose to use the office variance of -7.9% as being the norm for this section, as very few drawings received by my department detail office furniture positions.

c. Maintenance Factor

Computerised lighting design programs have within their construction the ability to select a maintenance factor. Usually this can be done by either choosing a finite value, or by letting the program calculate a value from a series of drop-down menu options. It is common practice in the UK for a maintenance factor or co-efficient of 0.8 to be used. In theory this means that the design is allowing for 20% more light to be provided initially, so that the average light levels throughout a maintenance cycle achieve the design level. The other option is to answer questions from drop-down menus to follow a course in accordance with EN12464-18 to reach a calculated value.

A maintenance factor is made up of several components:

$$
\begin{aligned}
& \\
& \text { Where } \\
& 5^{3}=\text { maintenance factor or coefficient } \\
& 5^{2} \text { = lamp lumen maintenance factor } \\
& \square \square \text { = lamp survival factor } \\
& 5^{2}=\text { luminaire maintenance factor } \\
& \square \square \square \square=\text { room surfaces maintenance factor }
\end{aligned}
$$

The Lamp Lumen Maintenance Factor is taken from lamp manufacturers' data, and gives the percentage of initial lamp lumens after a particular number of hours use. In the 1970s and 1980s lamps were given an initial lumen value as well as a lighting design value (LDL) based on 2000hrs use. This LDL figure was intended to take into account lumen maintenance and survival statistics, so that the maintenance factor of 0.8 only represented losses due to dirt and wear and tear of the luminaires and room surfaces. However, LDL figures are no longer produced by lamp manufacturers, the computer design programs use initial lumens, yet the maintenance factor of 0.8 is still prevalent in design specifications.

Whilst it is true that the maintenance factor (or light loss factor in the US) should be calculated as accurately as possible to save energy, and therefore CO_{2} emissions, it is still strictly speaking an estimate. It is a calculated guess at what the average horizontal illuminance on the room's working plane will be, at some time in the future, just before the lamps are changed and the luminaires cleaned.

It is necessary therefore to carry out a maintenance factor calculation using the information described in the CIBSE Code for Lighting 2006.
The parameters will be as follows:
A standard office area with Room Index of 2.5
Luminaires will be of an enclosed type, direct/indirect distribution
Lamps will be 35W T5 840
Annual burning hours will be 4000
Luminaires will be cleaned every 1 year
Lamps will be replaced every 3 years

The Lamp Lumen Maintenance Factor and Lamp Survival Factor can be found by refering to a standard table9 (Fig. 3.1), which gives typical values expected from lamp manufacturers. However, to further accuracy, the published lumen maintenance graph (Fig. 3.2) and the published survival graph (Fig. 3.3) from Havells Sylvania for the 35W T5 840 lamp are to be used.

Table 3.4 Typical lumen maintenance and lamp survival data

Typical values of LLMF and LSF												
	Operation time (1000 h)											
		0.1	0.5	1.0	1.5	2.0	4.0	6.0	8.0	10.0	12.0	14.0
Fluorescent multiand tri-phosphor	$\begin{gathered} \text { LLMF } \\ \text { LSF } \end{gathered}$	1	$\begin{gathered} 0.98 \\ 1 \end{gathered}$	$\begin{gathered} 0.96 \\ 1 \end{gathered}$	$\begin{gathered} 0.95 \\ 1 \end{gathered}$	$\begin{gathered} 0.94 \\ 1 \end{gathered}$	$\begin{gathered} 0.91 \\ 1 \end{gathered}$	$\begin{aligned} & 0.87 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.64 \end{aligned}$
Fluorescent halophosphor	$\begin{gathered} \text { LLMF } \\ \text { LSF } \end{gathered}$	1	$\begin{gathered} 0.97 \\ 1 \end{gathered}$	$\begin{gathered} 0.94 \\ 1 \end{gathered}$	$\begin{gathered} 0.91 \\ 1 \end{gathered}$	$\begin{gathered} 0.89 \\ 1 \end{gathered}$	0.83	$\begin{aligned} & 0.80 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.64 \end{aligned}$
Mercury	$\begin{gathered} \text { LLMF } \\ \text { LSF } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 0.99 \\ 1 \end{gathered}$	$\begin{gathered} 0.97 \\ 1 \end{gathered}$	$\begin{gathered} 0.95 \\ 1 \end{gathered}$	$\begin{aligned} & 0.93 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.64 \\ & 0.84 \end{aligned}$
High-pressure sodium	$\begin{aligned} & \text { LLMF } \\ & \text { LSF } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{gathered} 0.98 \\ 1 \end{gathered}$	$\begin{gathered} 0.97 \\ 1 \end{gathered}$	$\begin{aligned} & 0.96 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.85 \end{aligned}$
High-pressure sodium, improved colour	$\underset{\text { LLMF }}{\mathrm{LSF}}$	1	$\begin{gathered} 0.99 \\ 1 \end{gathered}$	$\begin{gathered} 0.97 \\ 1 \end{gathered}$	$\begin{aligned} & 0.95 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.94 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.50 \end{aligned}$	-

Fig. 3.1:
Typical lumen maintenance and survival factor values, taken from the CIBSE Code for Lighting: 2006

As can be seen in Fig. 3.2 the actual figure at 12000 hours is 0.91 . This is somewhat different from the lower value of 0.84 from the table in Fig. 3.1, but is due in the main to recent advances in T5 lamp technology.

Fig. 3.2:
Lumen Maintenance graph for a Havells Sylvania 35W T5 840 Iamp

Fig. 3.3:
Lamp Survival graph for a Havells Sylvania 35W T5 840 Iamp

From Fig. 3.1 we also obtain a value for Lamp Survival Factor of 0.75 . By looking at the actual graph in Fig. 3.3 we read off a figure of 0.94 , which again is significantly higher for similar reasons.

The Luminaire Maintenance Factor is now obtained by categorising the luminaire using Table 3.5^{10} from the Code of Practice.

Table 3.5 Luminaire categories and a list of typical locations where the various environmental conditions may be found

Category	Description
A	Bare lamp batten B
Open top reflector (ventilated self-cleaning)	
C	Closed top reflector (unventilated)
Enclosed (IP2X)	

Fig. 3.4:
Luminaire categories for different environmental conditions

The particular luminaire chosen for the project falls under the category ' D ' in Fig. 3.4, and the project room is 'Normal (N)'. If this information is used in Fig. 3.5 , with a cleaning cycle of one year, a value of 0.82 is obtained.

Table 3.6 Typical changes in light output from a luminaire caused by dirt deposition, for a number of luminaire and environment categories
Time between cleaning (years)

Fig. 3.5:
Luminaire maintenance factor values

The final component is the Room Surface Maintenance Factor. The table for calculating this part is shown in Fig. 3.6 below:

Table 3.7 Typical changes in the illuminance from an installation that occur with time due to dirt deposition on the room surfaces

Time between cleaning (years)		0.5			1.0)			1.5		
Room size (K)	Luminaire distribution	C	N	D	C	(N)	D	C	N	D
Small ($K=0.7$)	Direct	0.97	0.96	0.95	0.97	0.94	0.93	0.96	0.94	0.92
	Direct/indirect	0.94	0.88	0.84	0.90	0.86	0.82	0.89	0.83	0.80
	Indirect	0.90	0.84	0.80	0.85	0.78	0.73	0.83	0.75	0.69
Medium-large$(K=2.5-5.0)$	Direct	0.98	0.97	0.96	0.98	0.96	0.95	0.97	0.96	0.95
	Direct/indirect	0.95	0.90	0.86	0.92	0.88	0.85	0.90	0.86	0.83
	Indirect	0.92	0.87	0.83	0.88	0.82	0.77	0.86	0.79	0.74
Time between cleaning (years)		2.0			2.5			3.0		
Room size (K)	Luminaire distribution	C	N	D	C	N	D	C	N	D
Small ($K=0.7$)	Direct	0.95	0.93	0.90	0.94	0.92	0.89	0.94	0.92	0.88
	Direct/indirect	0.87	0.82	0.78	0.85	0.80	0.75	0.84	0.79	0.74
	Indirect	0.81	0.73	0.66	0.77	0.70	0.62	0.75	0.68	0.59
Medium-large$(K=2.5-5.0)$	Direct	0.96	0.95	0.94	0.96	0.95	0.94	0.96	0.95	0.94
	Direct/indirect	0.89	0.85	0.81	0.87	0.84	0.79	0.86	0.82	0.78
	Indirect	0.84	0.77	0.70	0.81	0.74	0.67	0.78	0.72	0.64

Fig. 3.6:
Room Surface maintenance factor values

From the Table 3.7 shown in Fig. 3.6 we look for the value which meets the parameters of the installation, namely luminaire cleaning period of 1 year, 'Normal' classification, direct/indirect distribution, and a Room Index of 2.5. Therefore, a value of 0.88 is obtained.

All of the component values have now been evaluated, and the complete maintenance factor can be calculated:

$$
\text { MF } \square \mathrm{LLMF} \square \mathrm{LSF} \square \mathrm{LMF} \square \mathrm{RSMF}
$$

So:

$$
\text { MF } \square 0.91 \square 0.94 \square 0.82 \square 0.88
$$

And:

$$
\text { MF } \square 0.617
$$

This figure is very different from the standard coefficient of 0.8. Even if lighting design lumens (LDL) had been used and the maintenance factor comprised
of the luminaire and room components only (LMF x RSMF), the result would still be 0.72 , which is at variance with the 0.8 value.

However, the aim of this work is to find out what are the possible variances from standard practice, and although the lumen output should be considered, it rarely is in practice. In order that the variances are kept acceptable and meaningful, it is proposed that a variance of -10% is used.

2. Secondary Variables

a. Linear Source Calculations

When a lighting design program such as Relux or Dialux carries out illuminance calculations it uses point source calculations:

$$
\text { (2) } \frac{x_{2} \cos ^{\text {® }}}{\square^{\text {6 }}}
$$

However, point source calculations are only accurate when the height (\square) is more than 5 times the length of the luminaire ${ }^{12}$. When the length is lower it is necessary to use a linear source formula to make the calculation accurate.

To compare a Dialux calculation using point source formula with a manual calculation using linear source formulae it is necessary to create a sample room which has been taken as 6 m square with a ceiling height of 2.7 m .

As we are looking at a comparison between 2 formulae basically, it is not necessary to consider reflected light, so all the room surfaces will have zero reflectance. The sample room will have 2 rows of 2 surface mounted fluorescent luminaires with prismatic controllers, Sylvania SYL Line 9141561, spaced symmetrically, and each housing twin 1500mm T5 35W tubes.

There will be 3 rows of 3 calculation points, arranged symmetrically also, and a working plane 0.85 m above finished floor level:

Fig. 4.1:
Sample room layout showing luminaires and calculation points

Surface luminaire $2 \times 58 \mathrm{~W}$ T8
Calculation point

It can be seen that all the calculation points lie away from the major axis of the luminaires, and in some cases they lie within the perpendicular boundary of the luminaire, and in some cases beyond. Therefore, two linear source calculations are necessary ${ }^{13}$:

Fig. 4.2:
Drawing for calculation at a point within the boundary of a luminaire

Fig. 4.3:
Drawing for calculation at a point outside the boundary of a luminaire

From the code of practice we obtain the respective equations:

For the calculation at a point within the luminaire boundary, and

Where the point is beyond the end of the luminaire.

So, for each of the 9 calculation points shown in Fig. 4.1 we need to carry out 4 linear source calculations, one for each luminaire, the sum of which will give the illuminance at that point.

Starting at Point (1) the first calculation involves luminaire A. Point (1) is 1 m from the left wall and luminaire A is 1.5 m away. Therefore the distance between them (X) is 0.5 m . The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m$ [luminaire depth]) which is $1.768 m$. The distance (D) is calculated as an hypotenuse from Fig. 4.2:
$\rightarrow \square \sqrt{0.5^{\text {i }} \square 1.768^{\text {b }}} \quad \rightarrow \square 1.837 \mathrm{~m}$
$\tan \square \frac{0.5}{1.768}$ and $\square 15.8^{\circ}$ As angle (回) = angle (『) in our situation,

Then: $\quad \square 15.8^{\circ}$ also.

Now 21.5 m , the end of the luminaire to the top wall is 0.75 m and from point (1) to top wall is 1.0 m . Therefore $\imath_{\mathrm{s}} \square 0.25 \mathrm{~m}$ and $\mathrm{s}_{\mathrm{s} ~} \square 1.25 \mathrm{~m}$.

Then: $\square_{\text {Q }} \square 7.7^{\circ}$ and $\square_{\text {g }} \square 34.2^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and $\infty_{\text {, }}$ both of them being in the parallel plane. We can obtain these values by interpolating table values for the particular luminaire. These values themselves were calculated from an Excel calculation program written by myself some years ago, and based on TM514. The resultant sheets are shown on pages A10-A11 in the Appendix. The Aspect Factor table is as follows:

Fig. 4.4:
Aspect factor table for the 9141561 Syl-Line luminaire

From the table we ascertain that:

$$
\mathrm{AF}_{1}=0.087 \square \pi \cdot 2.7 \pi \mathrm{~L} .0 .172-
$$

Therefore: $\quad \mathrm{AF}_{1}=0.133$
And:
$\mathrm{AF}_{2}=0.472 \square \frac{\pi}{5} 4.2 \mathrm{~K} 0.529-0.472 \pi \pi$
Therefore: $\quad \mathrm{AF}_{2}=0.520$
The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

γ angle $\square 15.8{ }^{\circ}$	Luminous Intensity Values - (cd/1000 Im)		
	Gamma Angle (degrees)	Transverse Plane (0°)	$\begin{gathered} \text { Axial } \\ \text { Plane }\left(90^{\circ}\right) \end{gathered}$
	0	286	286
	5	284	284
	10	279	280
	(15	276	276
	$\stackrel{25}{ }$	254	246
	30	254	235
	35	246	209
	40	233	174
	45	220	141
	50	202	112
	55	172	88
	60	161	68
	65	139	48
	70	110	34
	75	79	25
	80	54	16
	85	50	6
	90	51	0

Fig. 4.5:
Part of intensity table for the 9141561 Syl-Line luminaire

Therefore：	
And：	${ }_{*}{ }_{\text {ct }} \square 275.2 \mathrm{~cd} / \mathrm{klm}$
	$\square 275.2 \square 7.3 \mathrm{~cd}$
	$\square 2008.96$ cd

All the necessary values have now been acquired and can be put into the first line source calculation as follows：

e $_{\text {Q⿴囗 }} \square \frac{2008.96 \square \pi .0 .133 \square 0.520 \pi \square}{0.962}$| $1.5 \square 1.837$ |
| :--- |

Therefore：$\quad e_{\text {eqg }} \square 457.99$ lux

In a like manner $\boldsymbol{e}_{\text {の® }}$ can be calculated．This time we get the following values：

Point（1）is 1 m from the left wall and luminaire B is 4.5 m away．Therefore the distance between them (X) is 3.5 m ．The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is $1.768 m$ ．The distance（D） is calculated as an hypotenuse from Fig．4．2：
$\rightarrow \square \sqrt{3.5^{\text {5l }} \square 1.768^{\text {bl }}} \quad \rightarrow \square 3.92 \mathrm{~m}$
$\tan \square \frac{3.5}{1.768}$ and $\square 63.20^{\circ}$ As angle（ ${ }^{\circ}$ ）＝angle（回）in our situation，
Then：$\square 63.20^{\circ}$ also．

Now 21.5 m ，the end of the luminaire to the top wall is 0.75 m and from point （1）to top wall is 1.0 m ．Therefore $2 \square 0.25 \mathrm{~m}$ and $2 \square 1.25 \mathrm{~m}$ ．

Then：$\square_{\square} \square 3.65^{\circ}$ and $\square_{\text {® }} \square 17.69^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and ∞ ，both of them being in the parallel plane．We again can obtain these values by interpolating table values for the particular luminaire．The Aspect Factor table is as follows：

Aspect Factors		
$\begin{gathered} \text { Angle } \\ \text { (degrees) } \end{gathered}$	Parallel Plane	Perpendicular Plane
AF_{1} angle $\square 3.65^{\circ}$ (0	$\begin{aligned} & 0.000 \\ & 0.087 \end{aligned}$	0.000 0.004
10	0.172	0.015
AF_{2} angle $\square 17.69^{\circ}$ (15	0.255 0.335	0.033 0.058
25	0.407	0.089
30	0.472	0.123
35	0.529	0.159
40	0.576	0.195
45	0.611	0.227
50	0.637	0.256
55	0.656	0.280
60	0.669	0.300
65	0.677	0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.6:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{1 \mathrm{~B}}$ calculation

From the table we ascertain that

$$
\begin{gathered}
\mathrm{AF}_{1}=0.0 \square \frac{\mathrm{~K} .3 .65 \mathrm{~K}}{}=0.087- \\
\frac{0.0 \mathrm{~T} \pi}{5}
\end{gathered}
$$

Therefore: $\quad \mathrm{AF}_{1}=0.064$
And:
$\mathrm{AF}_{2}=0.255 \square \frac{\mathrm{~T}}{\mathrm{~T} .69 \mathrm{~K}} \frac{5.335-0.255 \pi \mathrm{~T}}{5}$
Therefore: $\quad \mathrm{AF}_{2}=0.298$
The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

γ angle $\square 63.2{ }^{\circ}$	Luminous Intensity Values - (cd/1000 Im)		
	Gamma Angle (degrees)	Transverse Plane (0°)	Axial Plane (90°)
	0	286	286
	5	284	284
	10	279	280
	15	276	276
	20	271	269
	25	254	246
	30	254	235
	35	246	209
	40	233	174
	45	220	141
	50	202	112
	55	172	88
	60 65	161 139	68 48
	70	110	34
	75	79	25
	80	54	16
	85	50	6
	90	51	0

Fig. 4.7:

Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{1 \mathrm{~B}}$ calculation

And: $\quad{ }_{\tau} \square 146.92 \mathrm{~cd} / \mathrm{klm}$
$146.92 \square 7.3 \mathrm{~cd}$
1072.52 cd

All the necessary values have now been acquired and can be put into the first line source calculation as follows:

Therefore: $\quad e_{\text {Q® }} \square 29.78$ lux

In a similar manner $e_{\text {® }}$ can be calculated, although this time we need to use the second calculation equation as the point is outside the boundary of the luminaire, as in Fig. 4.3.

Point (1) is 1 m from the left wall and luminaire C is 1.5 m away. Therefore the distance between them (X) is 0.5 m . The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is $1.768 m$. The distance (D) is calculated as an hypotenuse from Fig. 4.3:
$\rightarrow \square \sqrt{0.5^{\text {i }} \square 1.768^{\text {® }}} \quad$ ๑ $\square 1.837 \mathrm{~m}$
$\tan \square \frac{0.5}{1.768}$ and $\square 15.8^{\circ}$ As angle (${ }^{\circ}$) = angle (回) in our situation,

Then: $\square 15.8^{\circ}$ also.

Now 21.5 m , the end of the luminaire to the top wall is 3.75 m and from point (1) to top wall is 1.0 m . Therefore $_2.75 \mathrm{~m}$.

Then: $\square_{\text {Q }} \square 56.26^{\circ}$ and $\square_{\text {g }} \square 66.62^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and ∞_{s}, both of them being in the parallel plane. The Aspect Factor table is as follows:

Aspect Factors		
$\begin{gathered} \text { Angle } \\ \text { (degrees) } \end{gathered}$	Parallel Plane	Perpendicular Plane
0	0.000	0.000
5	0.087	0.004
10	0.172	0.015
15	0.255	0.033
20	0.335	0.058
25	0.407	0.089
30	0.472	0.123
35	0.529	0.159
40	0.576	0.195
45	0.611	0.227
50	0.637	0.256
AF_{1} angle $\square 56.26^{\circ}$ ($\begin{aligned} & 55 \\ & 60\end{aligned}$	0.656	0.280 0.300
AF_{2} angle $\square 66.62^{\circ} \begin{gathered}65 \\ 70 \\ 70\end{gathered}$ \square	$\begin{aligned} & 0.677 \\ & 0.682 \end{aligned}$	0.316 0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.8:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{1 \mathrm{c}}$ calculation

From the table we ascertain that

$$
\begin{gathered}
\mathrm{AF}_{1}=0.656 \square \pi 1.26 \pi .0 .669- \\
0 . \frac{656 \pi \pi}{5}
\end{gathered}
$$

Therefore: $\quad \mathrm{AF}_{1}=0.659$
And:

$$
\mathrm{AF}_{2}=0.677 \square \pi \cdot \frac{1.62 \pi}{} 0.682-0.677 \pi \pi
$$

5
Therefore: $\quad \mathrm{AF}_{2}=0.679$
The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

γ angle $\square 15.8{ }^{\circ}$	Luminous Intensity Values - (cd/1000 Im)		
	Gamma Angle (degrees)	Transverse Plane (0°)	$\begin{gathered} \text { Axial } \\ \text { Plane }\left(90^{\circ}\right) \end{gathered}$
	0	286	286
	5	284	284
	10	279	280
	15	276	276
	20	271	269
	25	254	246
	30	254	235
	35	246	209
	40	233	174
	45	220	141
	50	202	112
	55	172	88
	60	161	68
	65	139	48
	70	110	34
	75	79	25
	80	54	16
	85	50	6
	90	51	0

Fig. 4.9:

Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{1 \mathrm{C}}$ calculation

And：$\quad \sim_{m} \square 275.2 \mathrm{~cd} / \mathrm{klm}$
$275.2 \square 7.3 \mathrm{~cd}$
2008．96cd

All the necessary values have now been acquired and can be put into the second line source calculation as follows：
e $\left._{\square} \square \square \begin{array}{c}2008.96 \square \mathrm{~K} .0 .679 \square 0.659 \pi \square \\ 0.962\end{array}\right] \frac{1.5 \square 1.837}{}$

Therefore：$\quad e_{\text {© }}^{\text {® }} \square \square 14.03$ lux

In another similar manner $e_{Q ⿴ 囗}$ can be calculated，and again we need to use the second calculation equation as the point is outside the boundary of the luminaire，as in Fig．4．3．

Point（1）is 1 m from the left wall and luminaire D is 4.5 m away．Therefore the distance between them (X) is 3.5 m ．The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is $1.738 m$ ．The distance（D） is calculated as an hypotenuse from Fig．4．3：
$\rightarrow \square \sqrt{3.5^{5!} \square 1.738^{6}} \quad$ ๑ $\square 3.908 \mathrm{~m}$
$\tan \square \frac{3.5}{1.738}$ and $\square 63.60^{\circ}$ As angle（回）＝angle（回）in our situation，

Then：$\quad \square 63.60^{\circ}$ also．

Now 21.5 m ，the end of the luminaire to the top wall is 3.75 m and from point （1）to top wall is 1.0 m ．Therefore ${ }^{2} \square 2.75 \mathrm{~m}$ ．

Then：$\square_{\text {Q }} \square 35.13^{\circ}$ and ® $_{\text {\＆}} \square 47.40^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and ∞_{∞} ，both of them being in the parallel plane．We again can obtain these values by interpolating table values for the particular luminaire．The Aspect Factor table is as follows：

Aspect Factors		
$\begin{aligned} & \text { Angle } \\ & \text { (degrees) } \end{aligned}$	Parallel Plane	Perpendicular Plane
0	0.000	0.000
5	0.087	0.004
10	0.172	0.015
15	0.255	0.033
20	0.335	0.058
25	0.407	0.089
30	0.472	0.123
AF_{1} angle $\square 35.13{ }^{\circ}$ (35 40	0.529 0.576	0.159 0.195
$A F_{2}$ angle $\square 47.400{ }^{45} 5$	0.611 0.637	0.227 0.256
55	0.656	0.280
60	0.669	0.300
65	0.677	0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.10:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{1 \mathrm{D}}$ calculation
From the table we ascertain that

$$
\begin{gathered}
\mathrm{AF}_{1}=0.529 \square \pi \cdot 0.13 \mathrm{~K} 0.576- \\
0 . \frac{529 \pi \pi}{5}
\end{gathered}
$$

Therefore: $\quad \mathrm{AF}_{1}=0.530$
And: $\quad \mathrm{AF}_{2}=0.611 \square \mathrm{~T} .2 .4 \pi 0.637-0.611 \pi \pi$
5
Therefore: $\quad \mathrm{AF}_{2}=0.624$

The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

	Luminous	V Values -	00 Im)
	$\underset{\substack{\text { Cammanale } \\ \text { (deorecos) }}}{\text { a }}$	$\xrightarrow{\text { Transerse }}$ Plane (0)	${ }_{\text {Plane }}^{\text {Axala }}$ (90)
	0	286	286
	5 10	284 279	284 280
	15	276	276
	20	271	269
	${ }^{25}$	254	${ }^{246}$
	${ }^{30}$	254	235 209
	${ }_{40}^{35}$	${ }_{233}^{246}$	209 174
	${ }^{45}$	220	141
	50	202	${ }^{112}$
γ angle $\square 63.60^{\circ}$	${ }^{56}$	${ }^{172} 1$	88 68
	${ }^{65}$	139	${ }^{48}$
	70	110	34
	75	79	25
	80 85	54 50	16
	90	51	0

Fig. 4.11:
Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{1 \mathrm{D}}$ calculation

K．
And：$\quad \sum_{m} \square 145.16 \mathrm{~cd} / \mathrm{klm}$
$145.16 \square 7.3 \mathrm{~cd}$
$\square 1059.67$ cd

All the necessary values have now been acquired and can be put into the second line source calculation as follows：
e $_{\text {Q⿴囗 }} \square \frac{1059.67 \square \mathrm{~T} .0 .624 \square 0.530 \pi}{} \square \frac{0.445}{} \frac{1.5 \square 3.908}{}$

Therefore：$\quad e_{\text {eq }} \square 7.56$ lux

Direct illuminance levels have now been calculated at Point（1）from each of the four luminaires and a total value is obtained by adding them together：

$$
\text { ȩக } \square 457.99 \square 29.78 \square 14.03 \square 7.56
$$

éの $\square 509.36$ lux
So diagramatically：

Fig．4．12：
Calculated horizontal direc \dagger illuminance at Point（1）

But as the luminaire distribution is bi－symmetric，having symmetry in 0－180deg and $90-270$ deg planes at right angles to each other，then the calculated illuminance values at points 3，7，and 9 will be identical．The following diagram illustrates the progress so far：

Fig. 4.13:
Calculated horizontal direct illuminance at Points (1) (3) (7) \& (9)

If we now look at calculating the illuminance at Point (5), it is necessary to calculate using the second equation as the point is outside the luminaire boundary in each case.
This time we get the following values:
Point (5) is midway from either wall and therefore 3 m from the left hand wall. Luminaire A is 1.5 m away from the left hand wall. Therefore the distance between them (X) is 1.5 m . The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is $1.738 m$. The distance (D) is calculated as an hypotenuse from Fig. 4.3:
$\rightarrow \square \sqrt{1.5^{5 l} \square 1.738^{\text {b }}} \quad 9 \square 2.30 \mathrm{~m}$
$\tan \square \frac{1.5}{1.738}$ and $\square 40.80^{\circ}$ As angle (回) = angle (回) in our situation,
Then: $\square 40.80^{\circ}$ also.
Now $2 \square 1.5 \mathrm{~m}$, the top end of the luminaire to a parallel plane with point (5) is 2.25 m , and from the bottom end of the luminaire to a parallel plane with point (5) is 0.75 m . Therefore $\mathfrak{s}^{\infty} \square 0.75 \mathrm{~m}$, and $2 \square 2.25 \mathrm{~m}$.

Then: $\square_{\text {Q }} \square 18.06^{\circ}$ and $\square_{\text {® }} \square 44.37^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and $\infty_{\text {at }}$, both of them being in the parallel plane. We again can obtain these values by interpolating table values for the particular luminaire. The Aspect Factor table is as follows:

Aspect Factors		
Angle (degrees)	Parallel Plane	Perpendicular Plane
0	0.000	0.000
5	0.087	0.004
10	0.172	0.015
$\mathrm{AF}_{1} \text { angle } \square 18.06^{\circ}\binom{15}{20}$	0.255	0.033 0.058
25	0.407	0.089
30	0.472	0.123
35	0.529	0.159
$A F_{2}$ angle $\left.\square 44.370 \begin{array}{c}40 \\ 45\end{array}\right)$	0.576	0.195 0.227
50	0.637	0.256
55	0.656	0.280
60	0.669	0.300
65	0.677	0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.14:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{5 \mathrm{~A}}$ calculation

From the table we ascertain that
$\mathrm{AF}_{1}=0.255 \square \mathrm{~K} .3 .06 \pi .0 .335-$
$0 . \frac{255 \pi \pi}{5}$

Therefore: $\quad \mathrm{AF}_{1}=0.304$
And:
$\mathrm{AF}_{2}=0.576 \square \frac{\mathrm{~K}}{\mathbf{4} .37 \mathrm{~T}} \frac{0.611-0.576 \pi \pi}{}$
Therefore: $\quad \mathrm{AF}_{2}=0.607$
The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

γ angle $\square 40.80^{\circ}$	Luminous Intensity Values - (cd/1000 Im)		
	Gamma Angle (degrees)	Transverse Plane (0°)	Axial Plane (90°)
	0	286	286
	5	284	284
	10	279	280
	15	276	276
	20	271	269
	25	254	246
	30	254	235
	35	246	209
	40	233	174
	45	220	141
	50	202	112
	55	172	88
	60	161	68
	65	139	48
	70	110	34
	75	79	25
	80	54	16
	85	50	6
	90	51	0

Fig. 4.15:
Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{5 \mathrm{~A}}$ calculation

And: $\quad \underset{\sim}{*} \square 235.08 \mathrm{~cd} / \mathrm{klm}$
$235.08 \square 7.3 \mathrm{~cd}$
$\square 1716.08$ cd

All the necessary values have now been acquired and can be put into the second line source calculation as follows:

Therefore: $\quad \epsilon_{\text {eq }} \square 114.09$ lux

But again as the luminaire distribution, the luminaire layout, and positions of calculation points are all symmetric about the centre point (5), then the illuminance value just calculated will be the same from the other three luminaires.

Therefore:

$$
\begin{aligned}
& e_{\text {『த }} \square 114.09 \\
& 4 \text { e्शத } \square 456.36 \\
& \text { lux }
\end{aligned}
$$

So diagramatically:

Fig. 4.16:
Calculated horizontal direct illuminance at Points (1), (3), (5), (7) \& (9)

If we now look at calculating the illuminance at Point (4), again due to symmetric layout, we need only calculate values from luminaires A and B, and then double it to arrive at the total illuminance level.

This time we get the following values:

Point (4) is 1 m from the left hand wall. Luminaire A is 1.5 m away from the left hand wall. Therefore the distance between them (X) is 0.5 m . The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is 1.768 m . The distance (D) is calculated as an hypotenuse from Fig. 4.3:
$\rightarrow \square \sqrt{0.5^{5} \square 1.768^{61}} \quad \rightarrow \square 1.837 \mathrm{~m}$
$\tan \square \frac{0.5}{1.768}$ and $\square 15.80^{\circ}$ As angle (${ }^{\circ}$) = angle (回) in our situation,

Then: $\square 15.80^{\circ}$ also.

Now $2 \square 1.5 \mathrm{~m}$, the top end of the luminaire A to a parallel plane with point (4) is 2.25 m , and from the bottom end of the luminaire to a parallel plane with point (4) is 0.75 m . Therefore $\leqslant \square 0.75 \mathrm{~m}$, and $2 \square 2.25 \mathrm{~m}$.

Then: $\square_{\text {Q }} \square 22.21^{\circ}$ and $\square_{\text {® }} \square 50.77^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and ∞, both of them being in the parallel plane. We again can obtain these values by interpolating table values for the particular luminaire.

The Aspect Factor table is as follows:

Aspect Factors		
Angle (degrees)	Parallel Plane	Perpendicular Plane
0	0.000	0.000
5	0.087	0.004
10	0.172	0.015
15	0.255	0.033
AF_{1} angle $\square 22.21^{\circ} \begin{array}{r}20 \\ 25\end{array}$	0.335	0.058 0.089
30	0.472	0.123
35	0.529	0.159
40	0.576	0.195
45	0.611	0.227
AF_{2} angle $\square 50.77^{\circ} \begin{aligned} & 50 \\ & 55 \\ & \hline \end{aligned}$ \square	0.637	0.256 0.280
60	0.669	0.300
65	0.677	0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.17:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{4 \mathrm{~A}}$ calculation

From the table we ascertain that

$$
\begin{gathered}
\mathrm{AF}_{1}=0.335 \square \pi .2 .21 \mathrm{~K} 0.407- \\
0 . \frac{335 \pi}{5}
\end{gathered}
$$

Therefore: $\quad \mathrm{AF}_{1}=0.367$

And: $\quad \mathrm{AF}_{2}=0.637 \square \mathrm{R} .0 .77 \mathrm{~T} .0 .656-$ $\frac{0.637 \pi}{5} \pi$

Therefore: $\quad \mathrm{AF}_{2}=0.640$

The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

γ angle $\square 15.80^{\circ}$	Luminous Intensity Values - (cd/1000 Im)			Fig. 4.18:
	Gamma Angle (degrees)	Transverse Plane (0°	$\begin{aligned} & \text { Axial } \\ & \text { Plane }\left(90^{\circ}\right) \end{aligned}$	
	0	286	286	
	5	284	284	Part of intensity table for the
	10	279	280	9141561 Syl-Line luminaire for
	20	271	269	$\mathrm{E}_{4 \mathrm{~A}}$ calculation
	25	254	246	
	35	246	209	
	40	233	174	
	45	220	141	
	50	202	112	
	55	172	88	
	60	161	68	
	65	139	48	
	70	110	34	
	75 80	79 54	25	
	85	50	${ }_{6} 6$	
	90	51	0	
Page 38				Technical Report

And: $\quad \overbrace{\text { E }} \square 275.2 \mathrm{~cd} / \mathrm{klm}$
$275.2 \square 7.3 \mathrm{~cd}$
-2008.96 cd

All the necessary values have now been acquired and can be put into the second line source calculation as follows:

Therefore: $\quad e_{\text {gat }} \square 197.13$ lux
Now we need to calculate the illuminance at Point (4) from luminaire B. Point (4) is 1 m from the left hand wall. Luminaire B is 4.5 m away from the left hand wall. Therefore the distance between them (X) is 3.5 m . The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is 1.768 m . The distance (D) is calculated as an hypotenuse from Fig. 4.3:
$\rightarrow \sqrt{3.5^{\text {sl }} \square 1.768^{\text {® }}}$

- $\square 3.92$
$\tan \square \frac{3.5}{1.768}$ and $\square 63.20^{\circ}$ As angle (回) = angle (回) in our situation,

Then: $\square \square 63.20^{\circ}$ also.

Now $2 \square 1.5 \mathrm{~m}$, the top end of the luminaire B to a parallel plane with point (4) is 2.25 m , and from the bottom end of the luminaire to a parallel plane with point (4) is 0.75 m . Therefore $_\square 0.75 \mathrm{~m}$, and $2 . \square 2.25 \mathrm{~m}$.

Then: $\square_{\text {Q }} \square 10.83^{\circ}$ and $\square_{\text {8 }} \square 29.86^{\circ}$

These angles are the respective angles for obtaining the aspect factors ∞_{∞} and $\infty_{\text {, }}$ both of them being in the parallel plane. We again can obtain these values by interpolating table values for the particular luminaire.

The Aspect Factor table is as follows:

Aspect Factors		
$\begin{aligned} & \text { Angle } \\ & \text { (degree) } \end{aligned}$	Parallel Plane	Perpendicular Plane
0	0.000	0.000
(${ }^{5}$	0.087	0.004
AF_{1} angle $\square 10.83{ }^{\circ}\binom{10}{15}$	0.172 0.255	0.015 0.033
20	0.335	0.058
AF_{2} angle $\square 29.86{ }^{\circ}$ ($\begin{gathered}25 \\ \mathbf{3 0}\end{gathered}$	0.407 0.472	0.089 0.123
35	0.529	0.159
40	0.576	0.195
45	0.611	0.227
50	0.637	0.256
55	0.656	0.280
60	0.669	0.300
65	0.677	0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
-19. 90	0.686	0.346

Fig. 4.19:

Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{4 \mathrm{~B}}$ calculation
From the table we ascertain that: $\quad \mathrm{AF}_{1}=0.172 \square \mathrm{~T} .0 .83 \pi .0 .255-$ $0 . \frac{172 \pi \pi}{5}$

Therefore: $\quad \mathrm{AF}_{1}=0.186$
And: $\quad \mathrm{AF}_{2}=0.407 \square \frac{\pi .8}{5} \pi 0.472-0.407 \pi \pi$
Therefore: $\quad \mathrm{AF}_{2}=0.470$

The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

	Luminous	y Values -	000 Im)
	Gamma Angle (degrees)	Transverse Plane (0°)	$\begin{aligned} & \text { Axial } \\ & \text { Plane }\left(90^{\circ}\right) \end{aligned}$
	0	286	286
	5	284	284
	10	279	280
	15	276	276
	20	271	269
	25	254	246
	30	254	235
	35	246	209
	40	233	174
	45	220	141
	50	202	112
	55	172	88
γ angle $\square 63.20^{\circ}$	600	161 139	68
	65	$\frac{139}{110}$	48 34
	75	79	25
	80	54	16
	85	50	6
	90	51	0

Fig. 4.20:
Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{4 \mathrm{~B}}$ calculation

And：$\quad{ }_{\sim}^{*} \square 146.92 \mathrm{~cd} / \mathrm{klm}$
$146.92 \square 7.3 \mathrm{~cd}$
$\square 1072.52$ cd

All the necessary values have now been acquired and can be put into the second line source calculation as follows：

$e_{\text {の日 } \square} \square \frac{1072.52 \square \mathrm{~K} .0 .470 \square 0.1867 \square}{0.4509}$| $1.5 \square 3.92$ |
| :--- |

Therefore：$\quad e_{\text {ga }} \square 23.36$ lux

But again as the luminaire distribution，the luminaire layout，and positions of calculation points are all symmetric about the centre point（5），then the

Therefore：

$$
\begin{gathered}
\text { egக } \square 2 \pi .197 .13 \pi \square 2 \pi .23 .36 \pi \\
\text { egக }^{\square} 440.98 \text { lux }
\end{gathered}
$$

And as Point（6）is symmetric about the centre，the illuminance level there is the same as at Point（4），e『ぁ $\square 440.98$ lux．

So diagramatically：

Fig．4．21：
Calculated horizontal direct illuminance at Points $(1),(3),(4),(5),(6),(7) \&(9)$

Now we need to calculate the illuminance at Point (2) from luminaire A. Point (2) is 3 m from the left hand wall. Luminaire A is 1.5 m away from the left hand wall. Therefore the distance between them (X) is 1.5 m . The height of the luminaire above the working plane (H) is $(2.7 m-0.85 m-0.082 m)$ which is 1.768 m . The distance (D) is calculated as an hypotenuse from Fig. 4.2:

$$
\mathrm{D}=\sqrt{1.5^{2} \square 1.76} 8^{2} \quad \mathrm{D}=2.32
$$

$\tan \gamma \frac{1.5}{1.768}$ and $\gamma=40.31^{\circ} \quad$ As angle $(\gamma)=$ angle (β) in our situation,
Then: $\quad \beta=40.31^{\circ}$ also.

Now L = 1.5m, the top end of the luminaire A to a parallel plane with point (2) is 0.25 m , and from the bottom end of the luminaire to a parallel plane with point (4) is 1.25 m . Therefore $\mathrm{L}_{1}=0.25 \mathrm{~m}$, and $\mathrm{L}_{2}=1.25 \mathrm{~m}$.
$\tan \alpha_{1} \square \frac{0.25}{2.32} \quad$ and $\quad \tan \alpha_{1} \square \frac{1.25}{2.32}$
Then: $\quad \alpha_{1}=6.15^{\circ}$ and $\alpha_{2}=28.32^{\circ}$

These angles are the respective angles for obtaining the aspect factors AF_{1} and AF_{2}, both of them being in the parallel plane. We again can obtain these values by interpolating table values for the particular luminaire. The Aspect Factor table is as follows:

Aspect Factors		
$\begin{gathered} \text { Angle } \\ \text { (degrees) } \end{gathered}$	Parallel Plane	Perpendicular
0	0.000	0.000
AF_{1} angle $\square 6.15^{\circ}{ }^{5}$	0.087	0.004
AFiange 6.15	0.172	0.015
15	0.255	0.033
20	0.335	0.058
AF_{2} angle $\square 28.32^{\circ}{ }^{25}$	0.407	0.089
35	0.529	0.159
40	0.576	0.195
45	0.611	0.227
50	0.637	0.256
55	0.656	0.280
60	0.669	0.300
65	0.677	0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.22:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{2 \mathrm{~A}}$ calculation

From the table we ascertain that:

$$
\begin{gathered}
\mathrm{AF}_{1}=0.087 \square \mathrm{~K} .1 .15 \mathrm{~K} .0 .172- \\
0.087 \pi \tau \\
5
\end{gathered}
$$

Therefore: $\quad \mathrm{AF}_{1}=0.107$
And: $\quad \mathrm{AF}_{2}=0.407 \square \frac{\pi .3 .3}{5} \pi \cdot 0.472-0.407 \pi \pi$
Therefore: $\quad \mathrm{AF}_{2}=0.450$

The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

Fig. 4.23:
Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{2 \mathrm{~A}}$ calculation

Therefore: $\quad \mathrm{I}_{\gamma}=233 \square \pi .0 .31 \mathrm{~T} .220-$ $\frac{233 \pi}{5} \pi$

And: $\quad \mathrm{I}_{\gamma}=232.2 \mathrm{~cd} / \mathrm{klm}$
$=232.2 \square 7.3 \mathrm{~cd}$
$=1695.06 \mathrm{~cd}$

All the necessary values have now been acquired and can be put into the second line source calculation as follows:

$$
\mathrm{E}_{2 \mathrm{~A}}=\frac{1695.06 \square \mathrm{~K} .0 .450-0.107 \pi \square 0.7626}{1.5 \square 2.32}
$$

Therefore: $\quad \mathrm{E}_{2 \mathrm{~A}}=$ 127.41lux

Now we need to calculate the illuminance at Point (2) from luminaire C. Point (2) is 3 m from the left hand wall. Luminaire A is 1.5 m away from the left hand wall. Therefore the distance between them (X) is 1.5 m . The height of the luminaire above the working plane (H) is ($2.7 m-0.85 m-0.082 m$) which is 1.768 m . The distance (D) is calculated as an hypotenuse from Fig. 4.3:
$\mathrm{D}=\sqrt{1.5^{2} \square 1.768^{2}}$
$\mathrm{D}=2.32$
$\tan \gamma \square \frac{1.5}{1.768}$ and $\gamma=40.31^{\circ}$ As angle $(\gamma)=$ angle (β) in our situation,
Then: $\quad \beta=40.31^{\circ}$ also.

Now L = 1.5m, the top end of the luminaire C to a parallel plane with point (2) is 2.75 m , and from the bottom end of the luminaire to a parallel plane with point (2) is 4.25 m . Therefore $\mathrm{L}_{1}=2.75 \mathrm{~m}$, and $\mathrm{L}_{2}=4.25 \mathrm{~m}$.
$\tan \alpha_{1} \square \frac{2.75}{2.32} \quad$ and $\quad \tan \alpha_{1} \square \frac{4.25}{2.32}$
Then: $\quad \alpha_{1}=49.85^{\circ}$ and $\alpha_{2}=61.37^{\circ}$

These angles are the respective angles for obtaining the aspect factors AF_{1} and AF_{2}, both of them being in the parallel plane. We again can obtain these values by interpolating table values for the particular luminaire. The Aspect Factor table is as follows:

Aspect Factors

Angle (degrees)	Parallel Plane	Perpendicular Plane
0	0.000	0.000
5	0.087	0.004
10	0.172	0.015
15	0.255	0.033
20	0.335	0.058
25	0.407	0.089
30	0.472	0.123
35	0.529	0.159
40	0.576	0.195
AF_{1} angle $\left.\square 49.85^{\circ} \begin{array}{c}45 \\ 50 \\ 50\end{array}\right)$	0.611 0.637	0.227 0.256
55	0.656	0.280
AF_{2} angle $\square 61.37^{\circ} \begin{aligned} & 60 \\ & 65 \end{aligned}$ \square	$\begin{aligned} & 0.669 \\ & 0.677 \end{aligned}$	0.300 0.316
70	0.682	0.327
75	0.684	0.336
80	0.686	0.342
85	0.686	0.345
90	0.686	0.346

Fig. 4.24:
Aspect factor table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{2 \mathrm{c}}$ calculation

From the table we ascertain that:

$$
\begin{gathered}
\mathrm{AF}_{1}=0.611 \square \overparen{\mathrm{~K}} 4.85 \pi .0 .637- \\
\frac{0.611 \pi \pi}{5}
\end{gathered}
$$

Therefore: $\quad \mathrm{AF}_{1}=0.636$
And: $\quad \mathrm{AF}_{2}=0.669 \square \frac{1.37 \pi}{5} 0.677-0.669 \pi 7$
Therefore: $\quad \mathrm{AF}_{2}=0.671$

The intensity value, I_{γ}, can likewise be read off the table for the luminaire:

γ angle $\square 40.31^{\circ}$	Luminous Intensity Values - (cd/1000 Im)		
	Gamma Angle (degrees)	Transverse Plane (0°)	$\begin{aligned} & \text { Axial } \\ & \text { Plane }\left(90^{\circ}\right) \end{aligned}$
	0	286	286
	5	284	284
	10	279	280
	15	276	276
	20	271	269
	25	254	246
	30	254	235
	35	246	209
	40	233	174
	45	220	141
	50	202	112
	55	172	88
	60	161	68
	65	139	48
	70	110	34
	75	79	25
	80	54	16
	85	50	6
	90	51	0

Fig. 4.25:
Part of intensity table for the 9141561 Syl-Line luminaire for $\mathrm{E}_{2 \mathrm{c}}$ calculation

Therefore:

$$
\begin{gathered}
\mathrm{I}_{\gamma}=233 \square \pi \cdot 0.31 \pi \cdot 220- \\
\frac{233 \pi \pi}{5}
\end{gathered}
$$

$$
\text { And: } \quad \begin{aligned}
\mathrm{I}_{\gamma} & =232.2 \mathrm{~cd} / \mathrm{klm} \\
& =232.2 \square 7.3 \mathrm{~cd} \\
& =1695.06 \mathrm{~cd}
\end{aligned}
$$

All the necessary values have now been acquired and can be put into the second line source calculation as follows:

$$
\mathrm{E}_{2 \mathrm{C}}=\frac{1695.06 \square \mathrm{~K} .0 .671-0.636 \pi \square 0.7626}{1.5 \square 2.32}
$$

Therefore: $\quad \mathrm{E}_{2 \mathrm{C}}=13.00$ lux

But again as the luminaire distribution, the luminaire layout, and positions of calculation points are all symmetric about the centre point (5), then the illuminance value of $\mathrm{E}_{2 \mathrm{~A}}+\mathrm{E}_{2 \mathrm{C}}$ will be the same as for $\mathrm{E}_{2 \mathrm{~A}}+\mathrm{E}_{2 \mathrm{C}}$.

Therefore：
$e_{\text {ઈの }} \square 2 \pi .127 .41 \pi \square$

$$
2 \pi .13 .00 \pi e_{\text {ह. }}
$$

280.82 Iux

And as Point（8）is symmetric about the centre，the illuminance level there is the same as at Point（2），$e_{\square \mathbf{~}} \square 280.82$ lux．

So diagramatically：

Fig．4．26：
Calculated horizontal direct illuminance at all Points
（1），（2），（3），（4），（5），（6），（7），（8）\＆（9）

Therefore，the average horizontal direct illuminance at working plane height can now be obtained：
e \square 包 $\square \frac{509 \square 280 \square 509 \square 441 \square 456 \square 441 \square 509 \square 280 \square 509}{9}$
$e_{\square \text { п®ロ }} \square 437.11$

A comparison must now be made with the results obtained by a computerised calculation．As we are only concerned with direct illuminance the reflectances of the individual room surfaces must be set to zero．In addition，no maintenance factor will be included as with the hand calculations．

Therefore if exactly the same information and parameters are put into Dialux the following results are seen：

Fig. 4.27:
Calculated results from sample room using Dialux Lighting Software

As can be seen on the summary sheet above (Fig. 4.27:) the average calculated illuminance with a measuring grid of 3×3 points is 467 lux. The same calculation done manually, as detailed above, gave a value of 437.11 lux. The inaccuracy of the computer program shows a variance of -6.4%, which is far too high not to be considered important by the program designers. This comparison shows that by going 'back to basics', using mathematical models developed around the middle of the last century, we should not assume that computers produce very accurate results. The saying that 'the output from computers is only as good as the input' is particularly true in this instance.
b. Mathematical Engine Accuracy

When a computer carries out mathematical calculations, values are stored in memory locations for future use within the program. These values can be determined to a particular accuracy by the number of decimal places used, as well as being either rounded 'up' or 'down'. If the calculations use numbers stored in this way it is obvious that as more steps are taken, the less accurate the values become.

To exemplify this particular variance I have entered exactly the same input information and luminaire type into both DIALux and Relux design programs. The parameters comprise of a single room with the following criteria:

Dimensions:	$6 \mathrm{~m} \times 6 \mathrm{~m}$
Height of room:	2.7 m
Height of working plane:	0.85 m
Surface reflectances:	$70 \% ; 50 \% ; 20 \%$
Boundary zone:	0.0 m
Maintenance Factor:	0.8
Calculation Grid:	32×32 points
Luminaire type:	Syl-Line $2 \times 35 \mathrm{~W}$ T5
Total Luminous Flux:	29200 lumens
Number of luminaires:	4
Array:	Symmetrical within room
Furniture or objects:	None

The calculation results are shown overleaf. Fig. 5.1 is the Summary sheet from the DIALux program, and Fig. 5.2 is the Result Overview sheet from the Relux program.

The DIALux summary shows an average horizontal illuminance over an unobstructed working plane 0.85 m from finished floor level of 463 lux, whilst the same value in the Relux summary shows a value of 442 lux. If the assumption is made that neither of these values is exactly correct, then it is necessary to compare the variance from the midpoint. The mean of the two values is 452.5 lux, and the results from DIALux and Relux show their variances therefore as being $+2.35 \%$ and -2.35% respectively.

This variance is not insignificant when the total variance is evaluated later in the report.

Technical Memorandum 28 from the CIBSE 21 looks at a possible system for benchmarking lighting design software. It looks at an "Expectation of Error" band for standard calculations whereby variances of calculated values to measured values are expected to lie. The conclusion is that a variance of mean $\pm 13.4 \%$ is expected on direct point illuminance, whilst only mean $\pm 7.6 \%$ is expected on average illuminance. These are quite substantial variances which many will not be aware of.

Whilst these expected variances have been established within the tests carried out for TM28, they relate to possible variances in all lighting design software, of which there are numerous types in the marketplace. In this report I am concerned primarily with the maximum variance possible, within the confines of normal practice. As normal practice in the UK is to use either Relux or Dialux software, then the variance calculated in this report is taken from values calculated by only these two programs. The actual variance is then calculated from a mean between the two results.

I believe that the values calculated this way give a more realistic variance value in practice, than by taking the values straight from TM28.

Sample Room with reflectance / Summary

Height of Room: 2.700 m , Mounting Height: 2.700 m , Maintenance factor:
Values in Lux, Scale 1:78 0.80

Illuminance Quotient (according to LG7): Walls / Working Plane: 0.530, Ceiling / Working Plane: 0.328 .
Luminaire Parts List

| No. | Pieces | Designation (Correction Factor) | $\Phi[\mathrm{lm}]$ | $\mathrm{P}[\mathrm{W}]$ |
| ---: | ---: | :--- | ---: | ---: | ---: |
| 1 | 4 | Syl-Line 2x35W T5 Syl-Line (1.000) | 7300 | 75.0 |
| | | | Total: 29200 | 300.0 |

Specific connected load: $8.33 \mathrm{~W} / \mathrm{m}^{2}=1.80 \mathrm{~W} / \mathrm{m}^{2} / 100 \mathrm{~lx}$ (Ground area: $36.00 \mathrm{~m}^{2}$)

Fig. 5.1:
Calculated results from sample room using Dialux Lighting Software

```
Object
    Engine Accuracy
Installation : Sample Room
Project number : Engine Accuracy
Date : 06.05.2009
```


1 Room 1

1.1 Summary, Room 1

1.1.1 Result overview, Reference plane 1

General

Calculation algorithm used	Average indirect fraction with light colours
Height of evaluation surface	0.85 m
Height of luminaire plane	2.70 m
Maintenance factor	0.80
Total luminous flux of all lamps	29200 lm
Total power	300 W
Total power per area $\left(36.00 \mathrm{~m}^{2}\right)$	$8.33 \mathrm{~W} / \mathrm{m}^{2}\left(1.88 \mathrm{~W} / \mathrm{m}^{2} / 100 \mathrm{~lx}\right)$

Illuminance		
Average illuminance	Eav	442 Ix
Minimum illuminance	Emin	170 Ix
Maximum illuminance	Emax	633 lx
Uniformity g1	Emin/Em	$1: 2.59(0.39)$
Uniformity g2	Emin/Emax	$1: 3.72(0.27)$

Type No.lMake

EULUMDAT/2 LMAN=CONCORD:MARLIN LIGHTING;;LFAM=NONE;;LDTX=CONCORD.DTXISyI-Li
 Order No.
 : Syl-Line 2x35W T5
 Luminaire name : Syl-Line
 Equipment
 : $2 \times$ SLI 35W T5 0 W / 3650 Im RGB 1.001 .001 .00

Fig. 5.2:
Calculated results from sample room using Relux Lighting Software

c. Lamp Temperature

A 18 fluorescent lamp produces maximum light output when the ambient temperature is $25^{\circ} \mathrm{C} .{ }^{15}$ The modern range of $\mathrm{T} 5(16 \mathrm{~mm})$ tubes however have their maximum light output at an ambient temperature of $35^{\circ} \mathrm{C}$. Whilst this latter temperature can be easily achieved with careful luminaire design of an enclosed fixture, there is today popular use of these lamps in open style units using louvres and wire guards. It is therefore necessary now to look at the effect on T5 lamp light output when they are running in lower ambient temperatures.

The light output at both ambient temperatures is shown in Fig. 6.1, which is an extract from SYLVANIA Data Sheet 51P-5689C for FHE35W/T5 lamps. The full data sheet is shown in the Appendix on pages A12 and A13.

Fig. 6.1:
Extracted table from SYLVANIA Data Sheet 51P-5689C showing luminous flux at $35^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$

The table value for a colour 840 lamp with an ambient temperature of $35^{\circ} \mathrm{C}$ is 3650 lumens. Likewise for $25^{\circ} \mathrm{C}$ this value is reduced to 3320 lumens. The result is that a design calculation is reduced by -9% in practice. This result is typical in many practical situations where open luminaires are used. Also when T5 lamps are used in enclosed luminaires with very low ambient temperatures, such as cold stores. This situation is made worse if the operating times are relatively short, which will not allow the ambient temperature surrounding the lamp to warm up.

d. Voltage Fluctuation

A linear T5 fluorescent lamp such as the one detailed in the previous paragraph operates on a high frequency electronic ballast. As technology has advanced over recent years the electronic circuitry in the majority of modern units compensates for variations in supply voltage, thereby ensuring a constant light output from the lamp. This is illustrated in Fig. 7.1 below, which shows lamp power versus input voltage for $4 \times 14 \mathrm{~W}$ T5 electronic ballasts from various manufacturers.

However, if a T8 triphosphor fluorescent lamp is used on a switch start circuit with an electromagnetic ballast, then the light output will be affected by variations in mains input voltage.

The allowed variance in mains voltage in the UK is governed by Statutory Instrument 2002 No. 2665, and is known as "The Electricity Safety, Quality and Continuity Regulations 2002"16. This declares the mains voltage in the UK to be 230 V . From $1^{\text {st }}$ January 2004 the mains supply should be $230 \mathrm{~V}(-6 \%,+10 \%)$, $50 \mathrm{~Hz}(\pm 1 \%)$; i.e. a range of $216.2-253 \mathrm{~V}$. This replaces the UK's former specification which was $240 \mathrm{~V}(\pm 6 \%)$; i.e. a range of $225.6-254.4 \mathrm{~V}$.

Therefore, if we look at Fig. 7.2, the top curve represents a colour 840 lamp. The rated lumen output at 240 V is 5200 lumens. The lumen output at 216.2 V is 4800 lumens, and at 253 V is 5710 lumens. This represents a light output variance of -7.7% to $+9.8 \%$.

However, as wirewound ballast circuits are becoming much less common in the UK, and the fact that we have assumed the use of popular modern T5 technology throughout the rest of the report, it would be totally inaccurate to include these variances in the summary. Therefore, the variance for HF electronic circuits of $\pm 0 \%$ must be used instead.

It must be borne in mind that if a calculation was being made using t8 lamps with wirewound ballasts then the variance calculated above would indeed affect the accuracy of results.

Fig. 7.1:
Graph showing lamp power for 4x14W T5 fluorescent tubes at varying input voltage, for various control gear manufacturers

Diagramm 1: Lichtströme und Leistungsaufnahme von Leuchtstofflampen $1 \times 58 \mathrm{~W}$ in Abhängigkeit von der Betriebsspannung/Schaltung induktiv Wechsel von hellweiß/Standard (A) nach Farbe 840/weiß (B)

(1) Lichtstrom: 3-Banden-Lampe Farbe 840/weiß $\mathrm{Ra}=80-89$
(II) Lampenleistung
(III) Lichtstrom: Standardlampe hellweiß $\mathrm{Ra}=60-69$
(IV)

Lichtstrom: Standardlampe universal weiß $\mathrm{Ra}=70-79$

Graph showing lumen output at varying input voltage for various types of Sylvania T8 fluorescent tubes on wirewound ballasts

e. Light Meter Accuracy

When a lighting design has been installed it can be checked for conformity by the use of a portable light meter. As with any measuring apparatus the meter itself has an inbuilt inaccuracy due to many reasons, two of which are the quality of components and quality of construction.

Therefore, as one would expect, the accuracy of those meters at the cheaper end of the marketplace tends to be lower. Generally speaking, they will have a quoted accuracy of $\pm 5 \%$. It therefore follows that as the meters become more expensive the accuracy increases. These higher cost units will generally have a certified accuracy of $\pm 3 \%$.

To illustrate this point Fig. 8.1 below shows an extract from an on-line catalogue from Radio Spares Electronics. It can be seen that the 5% variance is evident on the cheaper meters, but improves as they become more expensive.

You are seeing 1 - 10 of 10 results.
gRS Components Ltd
3irchinoton Road. Corbv.

Fig. 8.1:
Extract from web page of Radio Spares showing attributes of various light meters, dated $6^{\text {th }}$ June 2009

It should be assumed that when an installation is being checked on-site by a consulting engineer, architect, or some other professional person, a higher quality light meter is being used, therefore the lower variance of $\pm 3 \%$ will be accepted as being the norm for the purposes of this report.

f. Lamp Lumen Output

All lamps are complicated items and none more so than modern T5 fluorescent tubes. They are manufactured using automated machinery within very small tolerances, yet no two lamps are identical.

When a lamp is first developed it is given a lumen output which it is expected to give out in the majority of production items. However, even with modern accurate machinery and chemical dosage, tolerances are such that the lumen output of individual lamps will vary plus or minus the rated value.

The standard for performance specifications of double-capped fluorescent lamps is BSEN 60081. In the section relating to photometric characteristics it states that "The initial reading of the luminous flux of a lamp shall be not less than 92% of the rated value". ${ }^{17}$ This means that production lamps can have an actual lumen output 8% less that that stated in the data sheet, and indeed that value included in a photometric file using that particular lamp. The term 'Initial Reading' as explained in the above document, is the value measured at the end of the 100 hour ageing period.

Therefore, it is possible that the scheme we have been using throughout this report, with a system of 35 W T5 840 linear fluorescent lamps, could yield only 460 lux when calculating for 500 lux just from this variance alone. In addition, the Standard above also states that "The lumen maintenance of a lamp shall be not less than 92% of the rated lumen maintenance value at any time in it's life". ${ }^{18}$ This means that an additional variance can occur during calculation of the Maintenance Factor described on page 19. However, if the table as illustrated from the CIBSE Code for Lighting is used, the Lamp Lumen Maintenance Factor (LLMF) is obtained by a rational value, so if the variance is used in this section it need not be changed in the other. That would give a false variance value which is not what is wanted.

g. Fixture Photometric Measurement

When photometric tests are carried out on fixtures/luminaires, they are tested in accordance with BS 5225 Part 1:1975 and BSEN 13032 Part 1:2004.

There are numerous variances and anomalies which can occur during a photometric test. If we assume that the tests are carried out by a competant and registered laboratory in accordance with the above standards, then it is only normal variances which need be considered. Laboratory conditions such as stabilised power supply, temperature and humidity control, photocell and associated apparatus calibration, and stray light control will all have been looked at in depth. However, there will be variances associated with the linearity and spectral response of the photometer. The accuracy of the photocell to a given illuminance should not deviate significantly over the working range of angles of incidence. The measured value should only vary with the cosine of the incidence angle. Any error shall not exceed 1% at incidence angles between 0° and 20° to the normal, or 5% at any other angle. ${ }^{19}$ In addition, the spectral sensitivity of the photocell should resemble the CIE photopic luminous efficiency function, known as the Viti λ curve. ${ }^{20}$ The difference between corresponding ordinates at any wavelength from 400 nm to 680 nm shall not exceed 5% of the normalised ordinate at 555 nm , which is the peak of the photopic curve. This can especially occur when the components of a light fixture such as a lens or filter change the spectral distribution of the light source.

These accepted variances in the accuracy of a photometer reading, when combined, relate to an overall possible variance of $\pm 9.75 \%$. Although it is unlikely that this extreme condition would occur, it must nevertheless be taken into consideration when assessing computerised design results.

Conclusion

The purpose of this report from the outset was to look at all the possible variables which could affect the accuracy of the results from computerised lighting design. The primary variables which are due directly to the input of assumptions made by the designer, together with secondary variables which are due to inconsistancies outside the designer's control, form a variance band in which the true result lies. The diagram below in Fig. 11.1 illustrates this variance band, and will show the results once the values have been added.

Fig. 11.1:
Diagram to show the possible variance from a True Result Norm (0) as a percentage

The resultant variances from the report are as follows:

Variable	Negative Variance	Positive Variance
Reflectance Values	0%	23.6%
Obstructions to Working Plane	7.9%	0%
Maintenance Factor	10%	0%
Linear Source Calculations	6.4%	0%
Mathematical Engine Accuracy	2.35%	2.35%
Lamp Temperature	9%	0%
Voltage Fluctuation	3%	3%
Light Meter Accuracy	8%	0%
Lamp Lumen Output	9.75%	9.75%
Fixture Photometric Measurement		0%

From the variance table above we can calculate a total negative variance as follows:
$\mathrm{V}_{\text {TN }}$

$$
\tau V_{\text {TN }} \square 1-\mathrm{C} .0 .921 \times 0.9 \times 0.936 \times 0.9765 \times 0.91 \times 0.97 \times 0.92 \times 0.9025 \pi
$$

$$
\begin{gathered}
\mathrm{V}_{\text {TN }} \square 1-0.555 \\
\mathrm{~V}_{\text {TN }} \square 0.445 \square 44.5 \%
\end{gathered}
$$

Likewise, a similar calculation for total positive variance is carried out as follows:

```
VTP
```



```
    5\T VTP \square 1-T. 0.764x 0.9765 x 0.97 x 0.9025\
        VTP \square 1-0.653
        VTP }\square0.347 \square 34.7%
```

These values can then be shown graphically on the variance diagram:

Fig. 11.2:
Diagram to show the resultant negative and positive variances from a True Result Norm (0) as a percentage

It is now important to realise the implications of the results. On the variance diagram in Fig. 11.2 above, the true average horizontal illuminance value will fall somewhere within the red shading.

This means that if a normal rectangular office is calculated and designed to an average level of 500 lux, and the array of luminaires is then installed, the resultant room once occupied will show a reading on a light meter which lies somewhere between 277 lux and 673 lux. Unfortunately, these figures make a mockery of illuminating engineering from a scientific or mathematical perspective, yet prove beyond doubt that lighting is not a precise science. Suffice it to say that any method of lighting calculation, whether it be by hand using the Lumen Method or by the use of sophisticated computerised design software, is not to be treated as finitely accurate. The results are at best only an indication of what a room will look like, and should not be relied upon per se.

This having been said, a qualified and competent lighting design engineer will evaluate the possibilities of error during the design process, input information as accurately as he or she can, and try to err on the positive side when possible. In this vein it is imperative that a disclaimer should be included with any calculations to explain that inaccuracies can and will occur.

Therefore, as mentioned in the introduction to this report, it appears that my tutor back in 1979 was totally correct in stating "If the measured results of a lighting design are within 20% of the calculated value then you have done well".

Evaluation \& Reflection

The report has covered I believe every aspect of computerised lighting design where a possible variance exists. One area which has not been investigated is the possibility of error within the program mathematics due to mistakes. This would have to be checked with a programmer working on the software, as it is not possible to check on the outside of the program. Generally speaking, the report has not considered mistakes at all, as these cannot be within the bounds of this report.

Whilst the results and conclusions have been stated, it would be reasonable to stand back and question whether the results from a recent design are that far out. The answer most certainly will be 'No'. The report has looked at possible errors, and linked the maximum errors down a certain path. In practice, the chances of high variances occurring on top of each other (or even at the same time) are very small.

Yes, it is possible that each variance is present to some degree, but only in smaller amounts. For example, I can understand a photometer having a variance of 1%, and indeed a lamp output being down by 1%, but not much more with modern technology. Having worked closely with lamp engineers in a modern lamp factory laboratory, and having seen photometric test results from batches over a 12 month period it is amazing how consistently accurate the lumen outputs from actual lamps are. Therefore, it is my opinion that those parameters covered by 'Secondary Variables' in practice may
jointly account for a variance of $\pm 5 \%$. It is the variances from 'Primary Variables', those caused by user input, which will be the major cause of any discrepancies in expected results. The design process as described in the CIBSE/SLL Code of Practice should therefore be followed to the letter to try and minimise any variance. Ask questions about surface finishes, about ceiling types, carpet manufacturers, obstructions to the working plane, and accurate cleaning cycles so that your parameters are as near to reality as is practical.

With the best will in the world and accurate information, I would expect my designs to be accurate to $\pm 10 \%$. Therefore, if a specification requires an average maintained horizontal illuminance of 200 lux minimum, then a designed value of $220-230$ lux is what I would aim for. There is no substitute for following a well tried design process, using tried mathematical models, and being as conscientious as possible. To enable any lighting engineer to do this it is important that they consider going "Back to Basics".

Appendix A

The conversation was very interesting, and he advised me that the most popular plain carpet tile for offices is their Palette 2000 range. Unfortunately there are 80 different colours in the range making for a very varied choice. I asked him if he had reflectance values for these 80 tiles and yes they had just completed their spectrometric testing. So, lets have a look at what we get for our 20% reflectance!

O NEXT SHEET

Here we have 4 commonly used carpet tile colours. Can anyone tell me which is the tile with a reflectance of 20% ?
0 CLICK
0 CLICK
0 CLICK
0 CLICK
Those are the values which Ifind totally amazing. My conclusion from this research is that we as lighting engineers should be looking at more realistic parameters to apply to our designs. We should quite reasonably be able to use 30 to 40% floor reflectances and be fully justified.

But lets look just a little deeper at our typical office scenario.

O NEXT SHEET

From the opening page on the website we need to look at the most popular ceiling. A mineral tile in a suspended 24 mm grid.
O CLICK

We now see the different ranges available. The most common type for offices is a range called "Frequency".
So lets have a look at that page.

O CLICK

You can see that there are 4 types of Frequence tile, with different shapes or sizes, but it is the finish that we are interested in, and they all have a reflectance of 83%.
Therefore. we have justification in using 80% ceiling reflectance for a practical design scenario.

Next item to look at then is paint for the walls, as most new builds have an emulsion finish. Dulux is the market leader here. so lets visit their website.

O CLICK

Unfortunately, I was unable to get the information I wanted from their website, and had to resort to sending them an email.
I asked for the light reflection value for "Matt Emulsion Magnolia".
I got an email back very quickly as follows:

O CLICK

So there we have it, a reflectance factor of 78%. A big difference to the 50% we have always been used to!

So lets go back to our table.

O CLICK

Enter the name of the room, select L-shaped room and afterwards define the orientation.

Frg 20 Workrng with Wizards - Room Dir.,.,.,.,nsons
Specify the Room's Dimension and the Room Height. Which wall symbolizes each letter a to dis displayed on the drawing.

Frg 21 Workrng with Wizards - Reflectron, Work plane,Mantenance Factor

Syi-Line

$2 \times 35 W$ version \square

Description:

Slim surface mounted T5 luminaire with prismatic controller, HF electronic gear.

Luminous Intensity Values- (cd/1000 Im)

Gamma Angle (degrees)	Transverse Plane (00)	$\begin{gathered} \text { Axial } \\ \text { Plane }\left(90^{\circ}\right) \end{gathered}$
	$\begin{aligned} & 286 \\ & 284 \end{aligned}$	$\begin{aligned} & 286 \\ & 284 \end{aligned}$
10	279	280
15	276	276
20	271	269
25	254	246
30	254	235
35	246	209
40	233	174
45	220	141
50	202	112
55	172	88
60	161	68
65	139	48
70	110	34
75	79	25
80	54	16
85	50	6
90	51	0
95	56	
100	48	
ius	36	
110	19	
115	16	
120	17	2
125	14	2
130	12	2
135	12	2
140	11	2
145	10	3
150	10	3
155	9	3
160	8	3
165	7	3
170	7	3
175	6	3
180	0	0

Aspect Factors

Angle (degrees)	Parallel Plane	Perpendicular Plane
	0.000	0.000
10	0.087	0.004
15	0.172	0.015
20	0.255	0.033
25	0.335	0.058
30	0.407	0.089
35	0.472	0.123
40	0.529	0.159
45	0.576	0.195
50	0.611	0.227
55	0.637	0.256
60	0.656	0.280
65	0.669	0.300
70	0.677	0.316
75	0.682	0.327
80	0.684	0.336
85	0.686	0.342
90	0.686	0.345
	0.686	0.346
Luminance Distribution (cd/11¥/klm)		

Angle	Transverse	Axial
Plane		

45	780	598
50	760	519
55	695	454
60	708	398
65	676	328
70	604	282
75	502	266
80	411	240
85	479	164

The Utilisatim Factor table, BZ values, and Distributim Factors (F) (W) \& (C) have been calculated in accordance >Mth CIBSE Technical Memorandum No. 5 (1980) from data tested $>$ Mthout a ceiling board. The UF values need to be corrected using the appropriate conversion factor. The Distributim Factcrs for c indricaland scalar illuminance have been calculated using data provided by Dr. A. R.Bean.

Allinformation, recommendations, or advice cmtained in this document or given by Havells S vania Fixtures (UK) Itd, or any of its subsidiaries, affiliates, or author sed representatives, whether written or cral, is given in good faith, to the best of its knONiedge, and based m current procedures in effect.
The products of Havells S vania Fixtures (UK) Itd cr if applicable, of its subsidiaries or affiliates are sold subject to General Conditims of Sale printed at the rear of the current catalogue or available upon request. Nothing in this or any ether document shall alter, vary cr supersede, cr operate to waive any of the General Cmditims of Sale. Each user of the products shall cmvince themselves, through all available sources (including finished product testing in its appropriate envirmment) of the suitability of the products supplied for its ONn particular purpose. Because actual use of the products by the user is beyond the mtrol of Havells S vania Fixtures (UK) Ltd, its subsidiaries and affiliates, such use is within the exclusive respmsibility of the user. Havells S vania Fixtures (UK) Ltd, its subsidiaries and affiliates cannct be held respmsible for any loss incurred through incorrect cr faulty use of the products. Infcrmation, recommendation and /or advice are neither made to infringe m any patents, nor to grant a license under any patent or intellectual property right of Havells S vania Fixtures (UK) Itd cr any of its subsidiaries or affiliated companies, nor to grant the right to file for any patent prctection. We have a pdicy of cmtinuous technical development and products and /or descriptims, and /or materials may be changed without prior public annamcement \boldsymbol{a} warning.
\square

Cap: G5 (IEC 61-1 sheet 7004-52-5)
${ }^{9}$) The maximum measure for the diameter includes out of round ofthe bulb and eccentricity versus the lamp axis.

ELECTRICAL DATA		NOMINAL VALUE	MIN.	MAX.
Frequency	(kHz)		20	26
Lamp nominal wattage	$r t f)$	35		
Lamp rated wattage	$r t f)$	35.5		
Lamp operating voltage	M	205.0	185.0	225.0
Lampe current	(rnA)	175		
CATHODE CHARACTERISTICS				
Test current	(rnA)	160		
Resistance of each cathode	(Q)	40	30	50
OPERATING CONDITIONS		NOMINAL VALUE	MIN.	MAX.
Ballast type		electronic		
Cap rim temperature	(oC)			120
Lamp ambient temperature	(oC)		-15	50
Burning position	horizontal or vertical, stamped side down			
LAMP LIFE*				
Average life (50\% failure)	(h)		24000	
Minimum individual life	(h)		14000	

Issued by Date Revision Date	$\begin{aligned} & \text { SLI LIchtsysteme } \\ & 04.05 .1999 \\ & 14.02 .2007 \end{aligned}$	DATA SHEET	Specification No.: 51P-5689 C Supersedes $: 51 \mathrm{P}-5689 \mathrm{~B}$ Page 1 of 21.11 .04
SLI reserves the right Data for guidance o	t to change data and spe ly.	tions without notice.	

PHOTOMETRIC DATA:							
COLOUR	No.	$\begin{gathered} \text { Luminous } \\ \text { Flux } \\ \text { maximum 2) } \\ \left(34.38^{\circ} \mathrm{C}\right) \\ (1 \mathrm{~m}) \end{gathered}$	Luminous Flux nominal value 1 b (25 'C) (Im)	CAI (Group)	Colour temp. (K)	Energy Emciency Class	ILCOS-Code
LUXLINE plus Colours							
HOMELIGHT DELUXE	827	3650	3320	18	2700	A	FDH-35127/LP-G5-16/1450
WARM WHITE DELUXE	830	3650	3320	18	3000	A	FDH-35/30/LIP-G5-16/1450
WHITE DELUXE	835	3650	3320	18	3500	A	FDH-35/35/LIP-G5-16/1450
OOOL WHITE DELUXE	840	3650	3320	18	4000	A	FDH-35/40/LIP-G5-16/1450
DAYLIGHT DELUXE	865	3400	3095	18	6500	A	FDH-35/65/LIP-G5-1611450

ATTENTION Lamps comply wth the requirements of IECEN 60081 and IEC/EN 61195. respectively. The eectronic ballast for lamp operation must comply with IECJEN 60929.

- Life test according to IECJEN 60081. Annex c- life-t me under evaluation.

1) Measured after 100 h at 413 V , withafrequenzy of $\mathbf{2 0 - 2 6 k H z}$, constant current and aresistanceof 1200 C as reference ballast at $25^{\prime \prime} \mathrm{C}$
The maximum luminous nux under optimal conditions $\left(34 \ldots .8^{\circ} \mathrm{C}\right)$ Is calculated by the luminous nux at $25^{\circ} \mathrm{C}$ at reference conditions and a factor $\mathrm{F}=0.91$ (maximum luminous flux = nominal luminous flux / F).

Issued by \quad SLI Lichtsysteme Date 04.05 .1999 Revision Date $:$ 14.02 .2007	DATA SHEET	$\begin{aligned} & \text { Specification No-:51P-5689C } \\ & \text { Supersedes }=51 \mathrm{P}-5689 \mathrm{~B} \text { 21.11.04 } \\ & \text { Page } 2 \text { of } 2 \end{aligned}$
SLI reserves the right to change data and spe Data for guidance only.	cations without notice.	

References

1. Henderson, S.T., \& Marsden, A.M., 1972. Lamps and Lighting. $2^{\text {nd }}$ ed. London: Edward Arnold (Publishers) Ltd. p. 405
2. Henderson, S.T., \& Marsden, A.M., 1972. Lamps and Lighting. $2^{\text {nd }}$ ed. London: Edward Arnold (Publishers) Ltd. p. 406
3. Henderson, S.T., \& Marsden, A.M., 1972. Lamps and Lighting. $2^{\text {nd }}$ ed. London: Edward Arnold (Publishers) Ltd. p. 407
4. Bean, A.R., \& Simons, R.H., 2001. Lighting Engineering: Applied Calculations. Oxford: Butterworth Heinemann. p. 190
5. Society of Light \& Lighting, 2002. Code for Lighting. Oxford: Butterworth Heinemann. Section 2.4.3.
6. International Standards Office, 2008. EN12464-1:2008 Light and Lighting: Lighting of Indoor Work Places, Brussels: ISO. Section 4.2.
7. DIAL GmbH., 2009. DIALux User Manual Version 4.7: The Software Standard for Calculating Lighting Layouts. Ludenscheid, Germany: DIAL GmbH. Fig21, p. 27.
8. European Standard, 2008. EN 12464-1:2008 Light and Lighting: Lighting of Indoor Work Places, Brussels: ISO. Section 4.9.
9. Society of Light \& Lighting, 2002. Code for Lighting. Oxford: Butterworth Heinemann. Table 3.4. p. 87.
10. Society of Light \& Lighting, 2002. Code for Lighting. Oxford: Butterworth Heinemann. Table 3.5. p. 88.
11. Society of Light \& Lighting, 2002. Code for Lighting. Oxford: Butterworth Heinemann. Table 3.7. p. 89.
12. Bean, A.R., \& Simons, R.H., 1968. Lighting Fittings: Performance and Design. Oxford: Pergamon Press Ltd. p. 2.
13. Society of Light \& Lighting, 2006. [CD Version] Code for Lighting. Oxford: Butterworth Heinemann. Section: Formulae for Line Source Calculations.
14. CIBSE Technical Memorandum No. 5, 1980. Calculation of Utilisation Factors. London: CIBSE Publications.
15. Henderson, S.T., \& Marsden, A.M., 1972. Lamps and Lighting. 2nd ed. London: Edward Arnold (Publishers) Ltd. pp. 226-227.
16. The Electricity Safety, Quality and Continuity Regulations 2002. SI 2002/2665, London: HMSO.
17. British Standards Institution, 2003. BSEN 60081:2003 Double-capped Fluorescent Lamps - Performance Specifications. Milton Keynes: BSI. Section 1.5.6. p. 8.
18. British Standards Institution, 2003. BSEN 60081:2003 Double-capped Fluorescent Lamps - Performance Specifications. Milton Keynes: BSI. Section 1.5.7. p. 8.
19. British Standards Institution, 1975. BS 5225:Part 1:1975 Specification for Photometric Data for Luminaires. Milton Keynes: BSI. Section 14 (f). p. 9.
20. British Standards Institution, 1975. BS 5225:Part 1:1975 Specification for Photometric Data for Luminaires. Milton Keynes: BSI. Section 14(e). p. 9.
21. CIBSE Technical Memorandum No. 28, 2000. Benchmarking Lighting Design Software. London: CIBSE Publications.
