











The Difference between Predictions and Reality of Non-Domestic Building Performance

**13 December 2011** 





## Peter Tse

**BSRIA Senior Design Consultant** 

Technology Strategy Board assigned BPE Assessor





## Why the TSB Competition for Building Performance



- Energy Survey
- Assessment of occupant satisfaction

- Large gap between Real performance and Virtual performance
- Industry has a long way to go before low carbon buildings are realised in the main stream
- 80% reduction in carbon emissions by 2050
  - Buildings account for 45% of total UK carbon emissions
  - Feedback loop:
    - needs to be closed
    - results of feedback acted upon



# **Typical Building Headlines**

High sustainable agenda:

- EPC Asset Rating 'A'
- BREEAM 'Excellent'
- LEED 'Platinum'
- 50% CO2 less than Part L
- Sustainability & Green awards
- How is this so different than what we modelled?
- Let looks at common themes with these sustainable buildings







# Lighting





• Blinds to be added due to glare







- Passive design, lack of make-up air due to lock windows
- User manual produced, no occupant had received







# Not accounted in design





## **User Interfaces**

|    |  | - Harrison and the |
|----|--|--------------------|
| 17 |  |                    |
|    |  |                    |
|    |  |                    |
|    |  |                    |
|    |  |                    |
|    |  |                    |

"An intelligent building is one that doesn't make its occupants feel stupid"... Adrian Leaman

- What are these controls for?
- Do users understand lighting or mechanical strategy?
- Underperforming controls







- Night and day mode
- Dimming
- Neither patients or nurses understood





## Metering

- Primary means for accounting for energy
- Difficult to find and read
- What does on-site FM know about system? Several not aware of metering system
- Reconciliation sub-meters with main meter – some no working, calibrated incorrectly
- Renewable sources, typically come with own metering package, not tied into main metering system
- Many can't state how building is performing - flying blind



## **Building Management System**





- Difficult to use too complex
- May require outside BMS systems engineer to adjust
- Lack of training for on-site staff
- How useful is it as a energy reporting or monitoring tool?
  - If not monitoring, how act?



## **Unregulated Loads**



















## **Server Rooms**



- What is room set point?
  - "Server room is nice and cold"
- Rooms conditioned 24/7/365
- Check air distribution strategy



## **Renewable Technologies**





#### Commissioning time squeezed



## **Renewable Technologies**



Ineffective meeting heating demands, gas boilers now lead



- Find many that are off
- FM complaints difficult to clean, problems with woodchip conveyor, expensive to service
- More trouble than its worth?
- Robust design?
- Incorporating features, but not performance



## **Good Intentions**

- Architect building form, orientation etc.
- Lighting designer complementary lighting design to building
- Equipment suppliers input into design, depending on controls and lights
- Electrical engineer provision of power, coordination with other trades
- Main Contractor, Electrical sub contractor
- Electrical sub sub contractor for various components, example controls
- Design intent lost in process, fragmented delivery
- Who is going to fine tune the system?



# Summary of Gaps between Predictions and Reality

- Over-optimistic design calculations not everything is counted
  - Failure to manage design intention through the entire delivery process, and fine tune systems
- Over complicated systems, over reliance on automation, lack of training for managers, awareness-raising for occupants
- Under performing controls, poor design and commissioning
- Cost and time trumps quality, designs become fragile under these pressures
  - Lack of awareness of how building is performing











ck of



| when the |  |
|----------|--|
|          |  |
|          |  |
| 19.33    |  |
|          |  |

# **Closing the Gap**



- Design tools are inaccurate predictors of energy use and occupant satisfaction
  - Don't account for hours of operation and operational preferences
  - Use different tools for regulations vs client expectations – capture true use of building
  - Tools like CIBSE TM22 Energy Assessment and Reporting method can provide check mechanism
- Need a change in outlook if Energy/Carbon Performance is the new metric, - Clients, designers, contractors and operators need to own their share of the project, and support others in delivery of performance





Builders and subcontractors are also responsible for meeting design requirements



# Soft Landings may be able to help

- Framework for a gradated handover of building
- Enhances and defines duties of design and build team, and client:
  - Briefing stage increasing dialog in supply chain
  - Forecast building performance from a users point of view
  - User involvement, before and after handover
  - Support client during first months of operation up to 3 years of use – fine tune systems





# Summary



- Understand our buildings in use via building performance
- Utilise tools that provide a more realistic picture of performance
- Need a change of outlook & encourage a no blame culture within teams
- Make feedback routine and embed a culture of building performance evaluation in the construction industry

 Close the loop between design aspirations and in-use performance

– BREEAM 'Excellent' ≠ DEC 'D' rating

