Chapter 2: Quality Assurance

Chapter 2:
Quality
Assurance
in
Building
Performance
Modelling

Foroutan Parand, AECOM; Nancy Wood, BuroHappold Engineering; Naghman Khan, IES

Chapter 2: Quality Assurance

Quality of building

- Safety, health and comfort
- Functional
- Low environmental impact
- Architecture and aesthetics

Quality of building performance modelling

Influences quality of the building

Quality Assurance

- Ensures quality of building performance modelling
- Reduces the risks and liabilities
- Instils confidence in clients & staff

Chapter 2: Quality Assurance

What do we mean by Quality Assurance?

- Not a from filling exercise
- Not imposing a bureaucratic process
- ... Although some may be necessary
- A system for getting it right on every job!

- Understand what influences the quality of building performance modelling
- Follow good practice: Documented QA procedures
- Review work at key stages
- Document decisions and results: Facilitating audit and repeat/revision of work

Quality Assurance

Chapter 2: Quality Assurance


Quality of building performance modelling depends on

- Understanding the needs of the client
- Tools
- Knowledge, skill and experience
- Communication

QA Chapter

- Benefits, training, understanding the building and its systems, the design process (2.1)
- Communication and documentation (2.2)
- Accuracy of and uncertainty in predictions (2.2)
- Software capabilities and validation (2.3)
- Software Selection (2.4)
- Setting up QA (2.5 & Appendices A, B and C)
 - Performance Assessment Method (PAM) as a QA Procedure (2.5)

Chapter 2: Quality Assurance

Setting up QA
People & Processes

Modelling process

- Five stages are identified
- Software choice is important, but not a frequently occurring step – Appendix C deals with software selection
- For each stage AM 11 gives some generic advice on how to set up a procedure or checks - Appendix B gives a more concise summary

Chapter 2: Quality Assurance

Setting up QA People

Modelling team

- Team Manager
- Modeller

Abilities of each given in AM11 2.5 and Appendix A

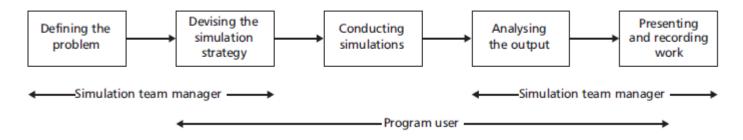


Figure 2.2 of AM11

Chapter 2: Quality Assurance

Software Choice

Appendix C: A form to be completed by software vendors

Allows Assessment and comparison of:

software capabilities,

pedigree, validation,

cost,

training

support, etc.

BREEAM requires the software selection is made in accordance with AM11 for some credits.


First year user / lio	ence fee							
Annual maintenan	ce fee							
Total cost of softwa	re and data							
C2.10 Acc	curacy							
Has the program be	Has the program been evaluated? Yes □ No □							
Does the vendor exe	Does the vendor exercise routine in-house quality testing				No			
Describe testing reg	ime (available from vendor)							
Complete the table l	below to document the validation hist	ory						
Technique	Method				Evidence	certificatio	n	
Code checking	Has the computer code been checked line by line?	Yes No						
Analytical tests	Has the computer code been checked line by line?	Yes	_					
		No						
Inter-program	Have predictions been compared with those from other simulation programs supplied with equivalent data input?	Yes						
comparisons		No						
Empirical	Have predictions been compared with real building measurements?	Yes						
validation		No						
Quality independence	Were the predictions made without knowledge of actual measured performance (i.e. blind)	Yes						
		No						
	Were the predictions made without knowledge of actual measured performance (i.e. blind)	Vendor Third Pa Both	arty					

C3 Thermal simulation programs: theoretical basis

Parameter	Type		Specify other / comments / notes
Conduction and thermal	Explicit finite difference		
storage solution method ^{(1)*}	Implicit finite difference		
III CIII CII	Response factor		
	Weighting factors		
	Heat balance		
	Other		
Time step length	User specified		
	Calculated by program		
Opaque surface:	One-dimensional		
conduction model	Three-dimensional		

Chapter 2: Quality Assurance

Defining the Problem

- The design question is not normally clearly defined
- Modelling team to understand, define and agree the objectives

Example:

- Client : Comfort in residential buildings
- Modelling team may need to think about:
 - Which standard? Is it just GLA driven assessment that the client needs?
 - Sample dwellings? All dwellings? Worst case?
 - Noise problems/requirements?
 - Natural ventilation? Mechanical ventilation?
 - Assess the design as given? Pass/fail results?
 - Provide a solution, e.g. window size & glazing properties, openable area or mechanical ventilation?

Chapter 2: Quality Assurance

Devising modelling strategy

- Software selected for the objectives and stage of design
- Information available studied
- Request for Information (RFI) for important parameters
- Assumptions made and agreed with the client
- Zoning
- Level of modelling detail determined on the basis of information available
- Do we need sensitivity analysis?
- Time and resources allowed

Chapter 2: Quality Assurance

Software Selection

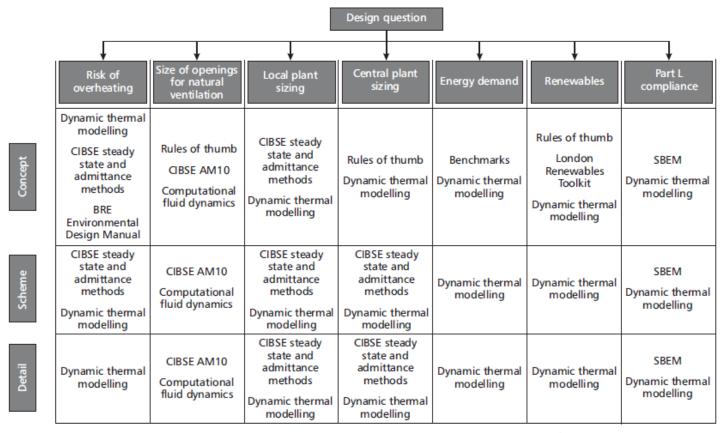
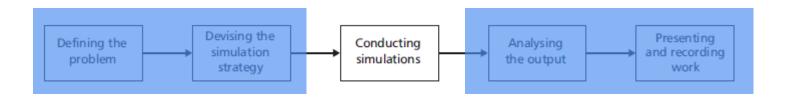
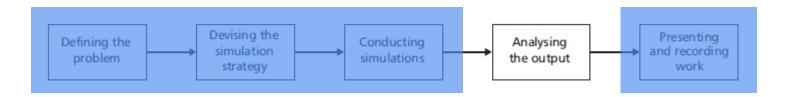



Figure 2.1 Examples of design questions and suggested type of software to apply at various design stages (CIBSE, 2015)

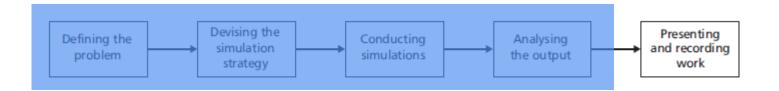
Chapter 2: Quality Assurance



Conducting the simulation

- Level of detail of the model
- Building geometry
- Non-geometric component data
- Usage data, occupancy, internal gain, set-points, etc.
- Boundary conditions
- Initial conditions if dynamic simulation
- Run the model
- Analyse results
- Assess any need for repeat of model run
- Back up of model files

Chapter 2: Quality Assurance



Analysing the output

- Post processing results
- It is healthy to suspect results
- Compare with rules of thumb or benchmarks
- Ensure other performance aspects are still fine, e.g. comfort, daylight
- Assess needs for iterations

Chapter 2: Quality Assurance

Presenting and recording work

- Successful presentation and reporting of results
- Review of report by a colleague
- Approval
- Documentation of models, files, runs, data sources, versioning of models

Chapter 2: Quality Assurance

Performance Assessment Method (PAM)

- A template for documenting how to carry out Building Performance Assessment
- Called PAMDOC
- Is recommended by CIBSE Guide A and AM 11
- Use as QA procedure as it includes the process defined in AM 11
- Download the template (PAMDOC) from Guide A Supplementary files for Chapter 0:

http://www.cibse.org/Knowledge/Guide-A-2015-Supplementary-Files/Chapter-0

0 PAM Identification

Identifier	CIBSE002
Purpose	Calculation of summertime temperatures using the CIBSE cyclic method
Application	Any single space
Program	Spreadsheet ID 1234
Date	15/11/2014
Author	CIBSE
Address of author	CIBSE, Balham

1 Definition of performance assessment

1.1	Purpose	To calculate summertime temperatures in a space using the CIBSE simple dynamic model given in CIBSE
		Guide A, section 5.10.5

1.2	Applicability	
1.2.1	Building type	Residential; non-residential
1.2.2	Environmental Control Systems	Natural ventilation, mechanical ventilation
1.2.3	Climate zone	Any
1.2.4	Program	Spreadsheet
1.2.5	Resources	CIBSE Guide A, section 5.10.5 (source of method).
1.2.6	Further information	

Chapter 2: Quality Assurance

Summary

- QA helps getting it right first time, every time
- QA helps saving time, reducing risks and liability
- QA influences the building performance
- QA should be developed by an organisation to suit its size
- QA means:
 - Understanding the objectives and agreeing with clients and documenting it
 - Identifying the best tool for carrying out an assessment
 - Reviewing work at each stages of the process
 - Routinely questioning the results and comparing with experience of similar, benchmarks, RofT
 - Documenting the work and results and saving models
- PAMDOC: Could be used as QA procedure
 - Download from Additional files to CIBSE Guide A
 - Would like to hear from your experience of PAMDOC

